

DESIGN GUIDE FOR ROAD SURFACE DRESSING

by D Bateman

With the advice of a panel representing the Industry and the Clients under the Chairmanship of Dr H L Robinson, The Road Surface Treatments Association

Road Note 39 (Seventh Edition)

TRL Limited

ROAD NOTE 39 (Seventh Edition)

DESIGN GUIDE FOR ROAD SURFACE DRESSING

by D Bateman

With the advice of the following Panel representing the Industry and the Clients under the Chairmanship of Dr H L Robinson, RSTA

H Robinson	(RSTA)	C Southwell	(EBUK)
J F Booth	(ADEPT)	J Bradshaw-Bullock	(MPA)
S Betteridge	(ADEPT)	R O'Connor	(RSTA)
I M Lancaster D Millar M F W Heslop J Keayes T Collett	(REA) (TS) (HE) (REA) (TAG)		

Copyright TRL Limited March 2016

	Approvals
Project Manager	
Quality Reviewed	

The views expressed in this design guide are the consensus views of the Revision Panel and not necessarily those of the organisations represented or of TRL Limited.

TRL is committed to optimising energy efficiency, reducing waste and promoting recycling and re-use. In support of these environmental goals, this report has been printed on recycled paper, comprising 100% post-consumer waste, manufactured using a TCF (totally chlorine free) process.

CONTENTS

Page

EXE	CUTI	E SUMMARY	.i
Part	I- I	ITRODUCTION	1
1.	Forev	ord	3
	1.1	Scope	
	1.2	Health and Safety	
	1.3	Sector Scheme	4
	1.4	Revision Panel	4
2.	Conc	pts	5
3.		al Principles	
0.	3.1	Pavement type	
	3.2	Surface dressing operations	
	3.3	Timetable for surface dressing	
4.	Guida	nce Documents	
ч.	4.1	Manual of Contract Documents for Highway Works	
	4.2	RSTA / ADEPT Code of Practice	
	4.3	RSTA / ADEPT Code of Practice for Signing at Surface Dressing Sites	
	4.4	National Guidance Document for Surface Dressing PD 6689	
5.	Mater	als	
0.	5.1	Aggregates1	-
	0.1	5.1.1 General	
		5.1.2 Aggregate selection for primary layer1	
		5.1.3 Aggregate selection for secondary layer1	
		5.1.4 Chippings for very hard substrate 1	
		5.1.5 Artificial aggregate 1	1
	5.2	Size of chippings1	
		5.2.1 Single surface dressing 1	
		5.2.2 Racked-in surface dressing 1	
		5.2.3 Double surface dressing	
		5.2.4 Inverted double surface dressing1	
		5.2.5 Sandwich surface dressing	
	F 0	5.2.6 Specific lanes	
	5.3	Binders1	3
Part	II – D	ESIGN 1	5
6.	Desig	n Methodology1	6
	6.1	Basic approach1	
	6.2	Design for texture depth1	8
	6.3	Design for quieter surfacing's 1	8
7.	Input	Parameters1	8
	7.1	Subdivision of parameters1	8
	7.2	Parameters for selecting the type of surface dressing and the rates of spread 1	
		7.2.1 Surface Temperature Categories1	9
		7.2.2 Road hardness2	
		7.2.3 Traffic categories	
		7.2.4 Traffic speed	
		7.2.5 Surface condition	
	7.0	7.2.6 Highway layout	
	7.3	Parameters for selection of materials	
		7.3.1 Skid-resistance 2 7.3.2 Seasons 2	
	7.4	Parameters for adjustment to local conditions	
	1T	arametere for adjustment to food conditions	

		7.4.1	Surface condition	
		7.4.2	Gradient	
		7.4.3	Shade	
		7.4.4	Local traffic	
8.			Type of Surface Dressing	
	8.1		lity of existing surface characteristics	
	8.2		ns within a site	
	8.3	• •	f surface dressing for a section	
9.			iderations of Surface Dressing Chippings and Binders	
	9.1		ngs – rates of spread	
		9.1.1	Single surface dressing	
		9.1.2	Racked-in surface dressing	
		9.1.3	Double surface dressing	
		9.1.4	Inverted double surface dressing	
		9.1.5	Sandwich surface dressing	39
	9.2		f spread of bituminous emulsion binder and chipping sizes for various	~ ~
			nations of traffic categories and surface hardness	
		9.2.1	Single surface dressings	
		9.2.2	Racked-in surface dressings	
		9.2.3	Double surface dressings	
		9.2.4 9.2.5	Sandwich surface dressings	
		9.2.5 9.2.6	Inverted double surface dressings	
			Adjustments for local conditions	
			sing Retread and Other Forms of Recycled Road Pavement	
11.			sing Footways and Cycleways	
			al	
	11.Z			
			General Chippings	
			Binder	
	11 3		ation	
40		•••		40
12.			sing Formations and Subgrades, Unbound Bases and Sub-bases and nd Bases and Sub-bases	46
		-	ATION OF THE DESIGN	
13.	Spec	ification.		48
	13.1	Genera	al	48
	13.2	Perforr	nance specification with design by contractor	48
	13.3		ls	
			General	
			Design details	
			Construction details	
		13.3.4	Inspection details	49
14.	Appli	cation or	n Site	51
	14.1	Genera	al	51
			work	
			er conditions	
	14.4		control	
	14.5	Nationa	al Highway Sector Scheme 13	52
15.	Ackn	owledge	ments	53
16.	Refe	ences		53
			ked Examples of Design Method	
γημ			1, Single Surface Dressing	
			2, Racked-in surface dressing	
	, <u>~</u> L			00

A.3 Example 3, Double Surface Dressing	63
Appendix B : Possible Highway Authority Example of a Check Table for Target Rates of Spre Product Types and PSV for Traffic Site Categories H, G and F for unshaded and norma	l
substrates with texture in the wheel tracks.	67
Appendix C : Index	68
Appendix D : Proforma for Recording Designs	70
Appendix E : Proforma for Record of Construction Data	71

DOCUMENT CONTROL

Issue 7 March 2016

REVISION LIST - KEY AMENDMENTS MADE IN THIS ISSUE

Revision	Page
Key concepts and technical terms are briefly	5
defined with external references supplied as a	
guide for more information i.e. RSTA / ADEPT	
Code of Practice for Surface Dressing.	
Updated references to guidance documents such as the MCHW & RSTA / ADEPT Code of Practice.	6
Updated Map of UK Surface Temperature Categories.	19
Size adjustment to Hardness vs. Road Surface Temperature graphs.	22-25
Recommended PSV levels for less heavily trafficked roads	28
The surface dressing types are coded for convenience.	29, 40-42
Slight adjustments to the Surface Dressing Season extent for 10&6 Racked-In Surface Dressing.	29
Figs 8.3.a and 8.3b updated for Type selection	36-37
Table 9.2.6a and 9.2.6b for secondary factors combined into one table 9.2.6	43
All references except House of Commons documents exclude dates of publication.	53
Three new design examples	56-66
Appendix B – Example Check Table for Rate of Spread, Type and PSV for sites F, G and H	67

DESIGN GUIDE FOR ROAD SURFACE DRESSING

EXECUTIVE SUMMARY

Road Note 39 is a guide for the design of surface dressing for roads throughout the United Kingdom. The document is divided into three parts for ease of use, each part having a different purpose. The parts and their purposes are as follows:

- Part I <u>Introduction</u>: General information on the scope of the document and general guidance on the reasons for surface dressing, the types of surface dressing and surface dressing operations. Also included are details of preparatory work with consideration of the necessary work to be carried out prior to the surface dressing of roads and footways to enhance the quality and maximise the life of the surface dressing.
- Part II <u>Design</u>: Details of the parameters used and the method employed to design a suitable surface dressing for specific conditions. Within this method, the design for the rate of spread of the binder is divided into two stages, dictated by the availability of information. These stages are the:
 - \circ $\;$ basic design based on information about the site; and
 - local adjustments with the properties of the component materials and along the site with changes in site conditions.

Both stages need to be completed to optimise the design and hence maximise the probability of achieving a successful surface dressing.

 Part III – <u>Application of the design</u>: Explanation of the types of specification that can be prepared with the designs together with general guidance on the application of the designs to the site. Also included are appendices giving examples of the design process and information on some less common situations.

Road Note 39 is a design guide; it is NOT prepared as, nor should it be used as, a specification. The results of the design process can be used to prepare specifications, but the advice in this Design Guide has not been drafted in a form that can be used directly as a specification. However, it is expected that the advice contained will be indispensable to those drawing up specifications.

The procedure for the design of surface dressings for highways consists of the steps shown below. However, the design of a surface dressing following the requirements set out in the tables and figures in these references without an understanding of the principles of the design method, as described in the totality of this Road Note, can lead to inappropriate decisions.

<u>Design Step</u>	Section	<u>Page</u>	Principal Variables	Section	<u>Page</u>
Input data	7	18	Surface temperature category Road hardness Traffic category Traffic speed Surface condition Highway layout	7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6	19 21 25 26 27 27
Surface dressing and binder types	8	32	Hardness category Traffic category Surface condition Highway layout Season	7.2.2 7.2.3 7.2.5 7.2.6 7.3.2	21 25 27 27 29

Design Step	Section	<u>Page</u>	Principal Variables	<u>Section</u>	<u>Page</u>
PSV of aggregates	7.3.1	27	Traffic category Highway layout	7.2.3 7.2.5	25 27
Aggregate size	9.1	38	Hardness category Traffic categories	7.2.2 7.2.3	21 25
Rate of spread of binder	9.2	39	Hardness category Traffic categories Traffic speed Surface condition Highway layout Season	7.2.2 7.2.3 7.2.4 7.2.5 7.2.5 7.3.2	21 25 26 27 27 29
Adjustment to rate of spread of binder for local conditions	9.2.6	42	Traffic speed Season Surface condition Gradient Shade Local traffic Change of chipping size	7.2.4 7.3.2 7.4.1 7.4.2 7.4.3 7.4.4 9.1	26 29 31 32 32 32 38

DESIGN GUIDE FOR ROAD SURFACE DRESSING PART I – INTRODUCTION

1. FOREWORD

1.1 Scope

Surface dressing can be used successfully on all types of roads, from the country lane that carries only an occasional vehicle to trunk roads and motorways carrying thousands of vehicles a day. It provides a simple but cost-effective form of maintenance that can play an important part in a highway infrastructure asset management plan.

Surface dressing has inherent advantages over other options for road surface renewal: its conservative use of material over thicker asphalt overlays and the avoidance of the need to take up, and subsequently process, existing pavement layers. Used appropriately surface dressing can be an important contributor to minimising the whole life cost of road pavements.

Surface dressing can also help with network resilience by being designed correctly for full temperature regime and by acting as the surfacing layer to prevent water penetration and help avoid damage caused by cold weather, ice and snow.

Road Note 39 is a guide for the design of surface dressing for roads throughout the United Kingdom; it is NOT prepared as, nor should it be used as, a specification. The document is divided into three parts for ease of use, each part having a different purpose. The parts and their purposes are as follows:

- Part I <u>Introduction</u>: General information on the scope of the document and general guidance on the reasons for surface dressing, the types of surface dressing and surface dressing operations. Also included are details of preparatory work with consideration of the necessary work to be carried out prior to the surface dressing of roads and footways to enhance the quality and maximise the life of the surface dressing.
- Part II <u>Design</u>: Details of the parameters used and the method employed to design a suitable surface dressing for specific conditions. All stages need to be completed to optimise the design and hence maximise the probability of achieving a successful surface dressing.
- Part III <u>Application of the design</u>: Explanation of the types of specification that can be prepared with the designs together with general guidance on the application of the designs to the site. Also included are appendices giving examples of the design process and information on some less common situations.

Although this Design Guide is not a contract and should not be used as such, it may be used to support such a contract. There are three types of contract:

- a recipe specification with design by the Client and Supply and Application by the Contractor in accordance with MCHW1 clause 919 Surface dressing: Recipe Specification.
- a performance specification where the contractor shall have a mandatory CE mark for the surface dressing product and is responsible for the design, materials, installation and for providing a performance guarantee, in accordance with MCHW 1 clause 922 Surface Dressing, Design, Application and Performance Specification and/or BS EN 12271 Surface Dressing Requirements.
- a performance specification where for Highways England Strategic Road Network (motorways and trunk roads) the contractor meets the requirements of MCHW1 clause 923 Cold Applied Ultra-Thin Surfacing.

It is essential that the allocation of responsibility for the design should be made clear in any contract. Also, for recipe specifications, the rate of spread in the tables for "zero adjustment" (nominal) rates should not be taken as the target rate for budgeting purposes; flexibility should be allowed in a tender for increasing the binder rate, or even changing the type of surface dressing, to allow for local conditions.

Road Note 39 (Seventh Edition)

1.2 Health and Safety

Health and Safety aspects are not within the scope of this design guide, but all parties involved in surface dressing should take full account of the requirements of:

- The Health and Safety at Work, etc, Act 1974 (House of Commons, 1974).
- The Management of Health & Safety at Work Regulations 1999 (House of Commons, 1999).
- The Control of Substances Hazardous to Health (COSHH) Regulations 2002 (House of Commons, 2002).
- The Construction (Design & Management) Regulations 2015 (House of Commons, 2015).
- National Highways Sector Scheme (NHSS) 13 (Section 1.3).

1.3 Sector Scheme

The successful application of surface dressing is a skilled occupation. Contractors certificated to BS EN ISO 9001 Quality Management Systems standard awarded by a Certification Body accredited by UKAS and Sector Scheme 13 have shown that they have the necessary skills and capability to ensure that surface dressing is applied in a safe, consistent and effective way. For this reason, many Highway Authorities make it a mandatory requirement for contractors wishing to tender for recipe surface dressing contracts using MCHW1 clause 919 to be registered holders of the Sector Scheme, which satisfies ISO 9001.

End Performance (Design, Application & End Product Performance) Surface Dressing is now regulated under BS EN 12271 and CE Marking. The Declaration of Performance is made more robust by using contractors who are registered to Sector Scheme 13 although Sector Scheme 13 is no longer mandatory on these types of contracts. Sector Scheme 13: The Supply and Application of Surface Treatments to Road Surfaces, is defined in Appendix A to the *Specification for Highway Works* (MCHW 1). UKAS sector scheme documents are available from UKAS, 2, Pine Trees, Chertsey Lane, Staines-on-Thames, TW18 3HR or from their website <u>www.ukas.com</u>

1.4 Revision Panel

This Design Guide was prepared by a Panel under the chairmanship of the RSTA. The Panel was drawn from organisations representing all sides of the industry, including customers, producers and material suppliers. The organisations represented on the Panel were:

- Association of Directors of Environment, Economy, Planning and Transport (ADEPT)
- Highways England (HE)
- Mineral Products Association (MPA)
- Eurobitume UK (EBUK)
- Local Government Technical Advisors Group (TAG)
- Road Emulsion Association (REA)
- The Road Surface Treatments Association (RSTA)
- TRL (TRL)
- Transport Scotland (TS)
- Transport Northern Ireland (TNI)
- CSS Wales (CSSW)

2. CONCEPTS

Detailed information covering the key concepts of Surface Dressing is published in the RSTA ADEPT Code of Practice for Surface Dressing available from <u>www.rsta-uk.org/publications.htm</u>

Figure 2.1 – Schematic Representation of Single Surface Dressing

Figure 2.2 – Schematic Representation of Racked-In Surface Dressing

Figure 2.3 – Schematic Representation of Double Surface Dressing

Figure 2.4 – Schematic Representation of Inverted Double Surface Dressing

Figure 2.5 – Schematic Representation of Inverted Double Surface Dressing using a Racked-In top dressing

Figure 2.6 – Schematic Representation of Sandwich Surface Dressing

3. GENERAL PRINCIPLES

3.1 Pavement type

The majority of pavements that are surface dressed are highways, and therefore this design guide has traditionally catered for road surface dressing. However, the technique is also applicable to footways, cycleways and un-trafficked areas including central reserves of dual carriageways. The basic method has to be modified for these types of situation, and advice on them is given in Chapter 10.

3.2 Surface dressing operations

Many operations are performed in surface dressing, the more important of which are listed in Table 4.3.1. The table sets out the operations in the order in which they are normally performed. However, these operations are not necessarily all undertaken by the same organisation.

Part II of this Design Guide is primarily aimed at covering items 3 and 4 in Table 4.3.1. The guiding principles in the assessment of sites and the design of surface dressing are that the type selected for a particular site should be sufficiently robust to retain the chippings, and that the size of chipping should be selected to take account of embedment by traffic. Part III gives information on where to find guidance on items 7 to 10 in Table 4.3.1.

3.3 Timetable for surface dressing

In order to minimise the potential for failures, the surface dressing should be undertaken in the correct season (Sub-Section 7.3.2) with the correct materials (Chapter 5) and on a correctly prepared site (Section 14.1). In order to be able to routinely achieve these conditions, the surface dressing operations in Table 4.3.1 should be carried out to the timetable indicated in Figure 4.3.1. The application of surface dressing without proper site preparation is unlikely to get the most out the treatment.

4. GUIDANCE DOCUMENTS

4.1 Manual of Contract Documents for Highway Works

The relevant specifications are given in Clauses 919, 922, and 923 of the *MCHW* (Volume 1 of the *Manual of Contract Documents for Highway Works*, MCHW 1) and associated guidance in *Notes for Guidance on the Specification for Highway Works* (MCHW 2). These documents can be obtained from http://www.standardsforhighways.co.uk.

Road Note 39 (Seventh Edition)

4.2 RSTA / ADEPT Code of Practice

Advice on best practice relating to surface dressing is given in the *RSTA / ADEPT Code of Practice for Surface Dressing* (The Road Surface Treatments Association) and must be referred to when surface dressing is being considered. The RSTA / ADEPT Code of Practice for Surface Dressing gives information and advice on all aspects of surface dressing and includes checklists designed to give advice on pre-contract, on-site and post-contract considerations. The *RSTA / ADEPT Code of Practice for Surface Dressing* is available on https://www.rsta-uk.org/publications/.

4.3 RSTA / ADEPT Code of Practice for Signing at Surface Dressing Sites

Reference should also be made to the Road Surface Treatments Association/ADEPT Code of Practice for signing at surface dressing sites (RSTA/ADEPT), available on <u>https://www.rsta-uk.org/publications/</u>.

No.	Operation	Description
1	Identify	Identify roads to be dressed. Advise Statutory Undertakers that any works they might foresee should be completed prior to the surface dressing being laid.
2	Repair	Repair potholes and damaged areas.
3	Assess	Measure the hardness of the road surface when the road temperature is between 15 - 35 °C and assess the number of medium and heavy vehicles. Note areas of high stress – roundabouts, sharp bends, traffic lights, steep hills, altitude, etc.
4	Design	Using above data, select type of surface dressing, binder and chipping type and size.
5	Materials	Decide who should be responsible for ordering chippings* and binder with the appropriate properties.
6	Contract Administra- tion	Contracts should be let well in advance of the work to secure skilled contractors and the best equipment. Select tenderers. Evaluate tenders, including discussions on polymer modified binders and surface dressing types, aggregate sources, methods, programmes of work and resources to be used.
7	Method of Working	Agree method of working and traffic control between Client and Contractor. Where necessary, give advance warning to those likely to be inconvenienced by the work.
8	Site Preparation	Complete patching a year ahead of the surface dressing season to repair potholes, ruts and cracks. Remove excess binder on the road surface using high pressure water retexturing. Remove vegetation from the road edge (clear the sidings) to restore the maximum road width and to ensure drainage to prevent standing water. Sweep, mask or remove reflective studs and ironwork, note and record road markings, remove multi layered centre line road marking. Remove tree hazards for spray tanker drivers and chipping spreaders.
9	Traffic Control & Execution	Implement warning signs and traffic control, sweep, apply the binder and chippings and roll. Comply fully with the requirements in the Code of practice for Signing at Surface Dressing sites.
10	Aftercare	Remove surplus chippings following the guidance on post sweeping within the RSTA / ADEPT Code of Practice for Surface Dressing. Swept chippings are not regarded as a waste and can be stored and reclaimed for further use. Control the speed and path of traffic until the surface dressing has stabilised. Replace

Table 4.3.1 – Surface Dressing Operations

No.	Operation	Description
		stop, give way and other road markings. Dusting is not aftercare when required several months after application. It is more of a remedial measure to resolve blackening or fatting up.
11	Record	Keep a record of the materials used, including their application rates, and the weather conditions, including air and ground temperatures together with relative humidity at the time of surface dressing because an emulsion binder is being used. Note any unusual occurrences during the work.
12	Inspect	Inspect the work regularly during the early life and record any deficiencies. Progressively extend the period between inspections, but inspect after the first frost and after periods of sub-zero temperatures.
13	Investigate	Where defects have occurred, assess the reason and, in extreme cases, consider the need for remedial works.

* chippings need to be ordered well in advance.

4.4 National Guidance Document for Surface Dressing PD 6689

National Guidance Document for Surface Dressing, PD 6689 (BSI) should be referenced when considering performance specifications using BS EN 12271 (BSI)

5. MATERIALS

5.1 Aggregates

5.1.1 General

Chippings shall comply with BS EN 13043 (BSI) and the recommendations in Table 4 of PD 6682-2:2009+A1:2013 (BSI) National Guidance Document for Aggregates for Bituminous Mixtures and Surface Treatments for Roads, Airfields and Other Trafficked Areas. - Guidance on the use of BS EN 13043.

Type of Surface			RN 39 Designation for
Dressing	Nominal Size	BS EN 13043 Designation	Rate of Spread Tables

Single	10 mm	6.3/10 mm	S10
Single	6 mm	2.8/6.3 mm	S6

Racked-In	14 mm & 6 mm	8/14 mm & 2.8/6.3 mm	R14
Racked-In	10 mm & 6 mm	6.3/10 mm & 2.8/6.3 mm	R10
Racked-In	10 mm & 4 mm	6.3/10 mm & 2/4 mm	R10

Double	14 mm & 6 mm	8/14 mm & 2.8/6.3 mm	D14
Double	10 mm & 6 mm	6.3/10 mm & 2.8/6.3 mm	D10

To avoid the risk of oversize particles, attention is drawn to Note A of Table 4 of PD 6682-2: **2009+A1:2013**. Table 7 of PD 6682-2:**2009+A1:2013** also gives guidance on specifying the flakiness of aggregates for surface dressing and it is recommended that this guidance is followed to avoid having to make adjustments to binder spray rates that will accommodate the shape of chippings. If chippings with compliant flakiness are not available, the guidance in Sub-section 9.2.6 should be adopted.

The smallest size chippings are not always available, and other non-standard sizes between 2.8/6.3 and 2/4 are used. If used, consideration needs to be given to what influence the particular non-standard size will have on the design.

The cleanliness of chippings is important in achieving good adhesion to the binder film. Table 4 in PD6682 recommends maximum fines (passing 63 micron) content of 1.0 % for surface dressing chippings. A thin film of dust on the chipping will prevent adhesion and can lead to early life failure. For this reason, all chippings must be thoroughly washed prior to delivery. Double washing is used to reduce the fines content further e.g. 0.5%. It should be noted that damp chippings work well with emulsion binders provided the weather is appropriate for surface dressing.

Road Note 39 (Seventh Edition)

Samples of chippings to be used should be tested for compliance as deliveries are received.

Further guidance on chippings for surface dressing is published in the RSTA / ADEPT Code of *Practice for Surface Dressing* and is available on <u>https://www.rsta-uk.org/publications/</u>

Crushed gravel chippings

The majority of chippings used are of crushed rock or slag, and the values for the basic binder-spread rates (Section 9.2) are based on their use. However, crushed gravel can be used on roads if they comply with the required aggregate properties but a correction must be applied in the determination of the final binder-spread rate (Sub-Section 9.2.6). The use of uncrushed gravel should be avoided.

5.1.2 Aggregate selection for primary layer

Chippings for single surface dressings and for the primary layer in multiple layer surface dressings should have the required minimum Polished Stone Value (PSV) (Sub-Section 7.3.1). However, the attainment of the relevant PSV limit does not imply that the aggregate has suitable properties to withstand crushing and abrasion, the latter being a surrogate for aggregate wear (durability). Therefore, limits on the maximum Los Angeles Value (normally 30) and Aggregate Abrasion Value (normally 12) of the aggregate may be required for certain sites and traffic intensities.

For Surface Dressing there is some evidence to suggest the AAV should be lower (i.e. 8 or less) than the figures quoted in HD36:2006 Table 3.3 to maintain adequate texture depth. This is particularly applicable on more heavily trafficked roads.

5.1.3 Aggregate selection for secondary layer

The secondary layer of smaller chippings used in racked-in and double surface dressings pack round the chippings in the primary layer, "locking" them in position. Strength is of minor importance and there are advantages in having a weaker aggregate, such as some types of slag. Because the smaller aggregate in a racked-in surface dressing has less contact with the vehicle tyres, PSV is of less importance but, in any event, the PSV should not be less than 50; this is not the case with double surface dressings where both layers of chippings need to have the appropriate PSV. However, cleanliness of the racked-in (secondary) chipping, together with soundness (good resistance to crushing and attrition) is vital. Introduction of dust into the system directly via the secondary chipping or through attrition significantly hinders binder adhesion to the larger primary aggregate and also hinders secondary stabilisation of the surface dressing through chipping re-orientation and secondary wetting.

5.1.4 Chippings for very hard substrate

On very hard substrates, particularly on roads in traffic categories A and B, resistance to crushing is important and specifying a lower Los Angeles value should be considered. Aggregates with an AAV not exceeding 10 should be specified for single surface dressings but this may not be attainable where a higher PSV aggregate is also required and in these circumstances the use of a multiple layer surface dressing should be considered. Multiple layer surface dressings are more closely packed which reduces abrasion.

5.1.5 Artificial aggregate

There are several types of manufactured aggregates including blast furnace and steel slag. The PSV characteristics of slag differ from natural stone. The specific gravity of blast furnace and steel slag is

very different. Steel slag is generally heavier than natural stone and blast furnace slag is lighter. These differences in specific gravity require the spread rate of chippings to be adjusted so that approximately the same volume of the respective slag is applied to the road surface.

5.2 Size of chippings

5.2.1 Single surface dressing

The recommended size of chippings to suit the amount of traffic and the hardness of the substrate of the existing road surface is given in Chapter 9; alternative sizes of chippings are also appropriate if they are given for those conditions in Table 9.2.6. The sizes recommended are related to the midpoint of each traffic category: lighter traffic conditions may make the next smaller size more appropriate. Surface dressings with larger-size chippings should be carried out early in the season in order to ensure adequate embedment before the onset of cold weather. The size of chippings may also be changed to assist in rationalizing the different designs required on site.

8/14 mm chippings should be used with the utmost care and in particular loose chippings should be removed from the surface before the road is opened to unrestricted traffic because of the higher risk of windscreen damage.

5.2.2 Racked-in surface dressing

The recommended size of chippings to suit the traffic and the substrate hardness is given in Chapter 9. However, alternative sizes of chippings may be selected to cater for particular noise or macro-texture requirements. The sizes of the chippings recommended are related to the mid-point of each traffic category: lighter traffic conditions may make the next smaller size more appropriate. Surface dressings with 8/14 mm and 2.8/6.3 mm size chippings should be carried out early in the season to maximize embedment before the onset of cold weather

The size of chippings may be changed to rationalize the number of different designs required at a site.

5.2.3 Double surface dressing

The recommended chipping sizes are as for racked-in surface dressing in Chapter 9.

5.2.4 Inverted double surface dressing

The first layer of chipping is normally 2.8/6.3 mm. The recommended size for the second layer is as for single surface dressings and racked-in surface dressings (Chapter 9) for the surface hardness category after the first layer has been installed.

5.2.5 Sandwich surface dressing

The recommended chipping sizes are as for racked-in and double surface dressings chosen to reflect the extent of the "excess" binder on the surface.

5.2.6 Specific lanes

5.2.6.1 Carriageways with multiple lanes

Heavy vehicles are not permitted in the outside lane of dual three- and four-lane carriageways, but these lanes still carry light commercial vehicles and heavy private vehicles within the classification of Medium/Heavy traffic. All lanes of dual carriageways that carry different traffic levels should always be designed separately.

5.2.6.2 Hard shoulders

Hard shoulders of all dual carriageways take little medium and heavy traffic under normal circumstances. However, contraflow and other temporary traffic conditions are often introduced for which a single surface dressing will be inadequate. A double surface dressing is generally recommended in order to ensure that adequate texture depth is provided and to provide an extremely high initial stability of the surface dressing.

5.2.6.3 Hard strips

Hard strips at the edge of carriageways that are not wide enough to accommodate four-wheeled vehicles without them straddling lanes will take no heavy traffic in normal circumstances. Therefore, they will be classified as traffic category H with a 2.8/6.3 mm recommended single size of chipping irrespective of the surface hardness.

5.2.6.4 Adjustment for use over open and negatively textured asphalt surfaces

Some of the binder will penetrate into an open and negatively textured surface and, unless allowance is made for this loss, insufficient binder may be left on the surface to hold larger sizes of chippings. The use of a pad coat followed by a racked-in surface dressing has been used successfully to help resolve this problem; however it may not always be necessary. See RSTA Code of Practice.

5.3 Binders

5.3.1 Introduction

Binders for surface dressing have been specifically designed to enable storage, transportation and application of highly viscous bituminous materials in a state that can be readily handled. The principal method for modern materials to achieve this aim is to use a cationic bituminous emulsion. Bitumen emulsion is a dispersion of fine bituminous particles within a continuous aqueous phase which coalesce (or break) on contact with the road surface and chippings. The residual binder will build up cohesive strength as the aqueous phase (water) evaporates. Good drying weather is essential to ensure early stability against traffic forces.

5.3.2 BS EN 13808

BS EN 13808 (BSI) provides a framework specification to categorise bituminous emulsions, covering both modified and unmodified emulsions, for a full range of applications. The binder description (Nomenclature) is based on the chemical nature, the nominal binder content of the emulsion, the type of binder (whether it contains flux oil, polymers etc.) and the chemical stability. Hence, the previous K1-70 category will now have various notations including C69B2, C69B3, C69BF2, or C69BF3 according to EN 13808. For more detailed explanation, reference should be made to the National Annex of BS EN 13808 (BSI) and to BS 434-2 (BSI).

Road Note 39 (Seventh Edition)

5.3.3 Unmodified emulsions

These materials (traditionally K1-70 now named: C69B2, C69B3, C69BF2, or C69BF3) constitute the unmodified emulsion materials used in United Kingdom surface dressing. The design recommendations limit their use to lower traffic category low stressed sites and they can offer valuable engineering solutions in many of these situations.

5.3.4 Polymer modified binders

Polymer modified binders have historically been processed and procured under a proprietary regime, which essentially involves the addition of polymers and/or additives during production.

BS EN 13808 (BSI) also provides the framework for specifying these emulsions. The presence of the letter "P" in the nomenclature defines the emulsion as a polymer-modified emulsion e.g. C69BP3, see BS 434-2 (BSI).

Different classes of polymer modified binders are specified, based on the minimum levels of peak cohesion. The more highly modified materials tend to exhibit higher levels of cohesion over a greater temperature range and be applicable to higher traffic category and/or stress situations on the road. It should be noted, however, that cohesion provides only one characteristic of the binder and will not in isolation provide all the required information to predict performance, especially in terms of: breaking behaviour, adhesion, healing, chipping-orientation and long term durability. The grades are as described in Table 5.3.1.

UK Classification	Minimum peak cohesion (J/cm²)	Pendulum Cohesion Class (BS EN 13808:2013)
Unmodified	0.7 ^(a)	5
Intermediate Grade	1.0	4
Premium Grade	1.2	3
Super-Premium Grade	1.4	2

Table 5.3.1 Grades of bituminous emulsions

Notes: (a) For an unmodified binder there is no requirement for the minimum peak cohesion value, although it is expected that the majority of unmodified binders will have a minimum value greater than 0.7 J/cm². Therefore, the value stated is given for guidance only and does not constitute a specification.

Where the design leads to the option for unmodified binder or a choice between unmodified and polymer modified binder, a balance should be considered between initial application costs and whole life cycle costs as to the most appropriate option to select. Further guidance on the specification and application of bitumen emulsions can be found on the Road Emulsion Association's "Technical Datasheets" webpage http://www.rea.org.uk/technical.htm.

DESIGN GUIDE FOR ROAD SURFACE DRESSING PART II – DESIGN

6. DESIGN METHODOLOGY

6.1 Basic approach

Assuming the road site is suitable for surface dressing the design methodology follows the steps in Table 6.1, which provides an index to the sections within this document concerning the various steps an engineer should take when designing a surface dressing. It forms a useful aide-memoire, but an engineer will need to use judgment on the applicability of these steps to a specific scheme, particularly for roads carrying heavy traffic at high speeds.

The designs should be properly documented, preferably on a proforma specifically prepared for the purpose. An example of a suitable form is shown in Figure 6.1 (repeated as Appendix D, which may be copied for use in design, if required). Four worked examples of the design method are given in Appendix A.

The design method described in this Design Guide can be used for the appropriate type of surface dressing and constituent materials for most situations. If there are any problems, advice may be sought from engineers experienced with the design method or, particularly in the case of problems with the documentation, from the Road Surface Treatments Association.

Step	Parameter to be determined	Road Note Section
1	Surface Temperature Category	Table 7.2.1
2	Road Hardness Category (road hardness probe & temperature required from prior testing)	Table 7.2.2
3	Traffic – flows and speeds – medium and heavy vehicle figures	(from Highway Authority)
4	Traffic Category	Table 7.2.3
5	Geometric Features – bends (radius) – gradients (%) – junctions/parking/pedestrian crossings	(from Highway Authority)
6	Chipping Properties - Type - PSV - AAV - Shape (Flakiness)	(from Specification) Sub-Section 7.3.1
7	Type of Surface Dressing	Figures 8.3a or 8.3b
8	Chipping size(s) / Binder Spread Rate and local adjustments	Section 9.2
9	Chipping Spread Rate	Section 9.1

Table 6.1 – Operations in Designing Surface Dressing

Road number:	sign of Ro	bad Surra	ce Dre	ssin	-	on/Are		(Sever		aition)	
Section location:												
Length:	m	Width:			m <u>N</u>	lo. of	lanes:		Are	ea:		m²
Lane(s)	Medium/Heavy Traffic: cv/l/d NRSWA road type:											
Traffic Speed: *	_		mph									
Traffic category: *	affic category: * A B C D E F G H											Н
Location: * South	n Cen	tral N	orth		Tempe	rature	Cate	gory: *	Α	В		C D
<u>Road Hardness (R</u> <u>depth</u> :	<u>RH) probe</u>		mm	at	°C	N	lin. PS	<u>V:</u>		Max	k. AA∖	<u>.</u> .
<u>RH</u> Ver <u>Category</u> : *	ry Hard	Hard	t	N	ormal		Soft	Ve	ery Sc	oft	Va	ariable
Surface condition: *		Very bir rich		Bin	der Rich		Norma			ure in track	s le	Binder an/Porous
Radius of curvature	*	Under 1	00 m	10	0 – 250	m d	over 2	50 m	Exp	ected	Mont	n on Site:
Junction or crossing	1: *	Approa	ach	No	n-approa	ach						
Overall gradient: *		up to 5	5%	5 -	- 10 %	Ov	er 10 %	%		Uphi		Downhill
Type of surface dres	ssing: *	Single R	acked	-In	Double	e In	verted	Double	Sa	ndwic	h	
Chipping size: *	8/14	mm 6.3/10 mm			10 mm	2.8/6.3 mm				Oth	ner:	
[8/14 & 2.8	8/6.3 mm 6.3/10 & 2.8/6.3				mm 6.3/10 & 4/2 mm						
Aggregate type: *		Crushed rock			Blast-furnace			Steel slag			G	Gravel
Flakiness index: *		Less than 10 %			10 % to 15 % 1			15 % to 20 %			More than 20 %	
Bituminous emulsio	<u>n binder:</u>	Unmo	odified		Interm	nediate Premium Grade Super-Pre				-Premium		
Seasonal risk categ	ory:	High				Significant			Low			
Binder spread rate		First laye	er		L/n	n²	S	Second I	ayer	*		L/m²
Location	<u>Aggregate</u> type	<u>Flakiness</u> Increase of	chipping size	<u>Shade</u>	<u>Surface</u> condition	Gradient	<u>Traffic</u> Speed	<u>Untrafficked</u> <u>area</u>		<u>n of</u> tors	Rate of spread of binder	
												L/m ²
												L/m ²
<u> </u>												L/m² L/m²
I	1 1	1	1									
Designer:				Initia	ale				Da	to. [1 1

Design of Road Surface Dressings to Road Note 39 (Seventh Edition)

Figure 6.1 – Suitable Proforma for Recording Designs

6.2 Design for texture depth

The basic approach has been developed around a method to consistently achieve a texture depth that is acceptable after embedment with trafficking. For major roads, designing to this Road Note and PD 6689 (BSI) has meant that there will be a retained textured of 1.5 mm or 1.2 mm whilst, for lower traffic categories, it may be less.

At present there is no definitive method to design for the macro-texture that will exist after embedment has taken place, but in-service texture depth requirements can be included in job specifications. Experience is then needed to assess what macro-texture needs to be provided prior to traffic that will retain the specified macro-texture at the end of the set period. If a texture depth that is outside the normal range is required, then the chipping sizes will need to be increased or decreased, according to the type of dressing being used, by an experienced designer. The extent of the change required has not been quantified in this Road Note.

6.3 Design for quieter surfacing's

In 2003 the RSTA commissioned research at the University of Ulster into the complex mechanisms involved in the generation of tyre / road noise. From this research, a methodology for selecting the type of surface dressing to minimise tyre / road noise was developed. This methodology is based on the guidance in this Road Note and is published in the RSTA/ADEPT Code of Practice for Surface Dressing Part 8 available at: www.rsta-uk.org/publications.

The University of Ulster research demonstrated that it is possible to select a surface dressing both with the required macro-texture to maintain skid resistance and with a tyre-noise performance comparable to that of a thin surface course system (TSCS).

7. INPUT PARAMETERS

7.1 Subdivision of parameters

The values for different parameters are derived from different aspects of the design. These aspects are:

- Selection of the type of surface dressing.
- Selection of the type of component materials (binder and chippings).
- Calculation of the rates of spread of binder and chippings.
- Local adjustments to the above values along the site with changes in conditions.

Some parameters are needed for more than one aspect of the design; in particular, all those needed for determining the binder spread rate are also used in the selection of the type of surface dressing. Therefore, the parameters to be considered are:

- Parameters for selecting the type of surface dressing.
- Parameters for selecting the component materials.

7.2 Parameters for selecting the type of surface dressing and the rates of spread

7.2.1 Surface Temperature Categories

The climate in the UK is not uniform, with the average temperature lower in the north. At lower temperatures, there is less opportunity for the chippings to become embedded in the substrate and, hence, more binder is required to hold the chippings during the winter. The altitude of the site also influences the properties of the binder required to retain the chippings because of the change in temperature. Also, the deliberate use of larger chippings and more binder at high altitude may be useful on minor roads to assist traction in winter.

In this Design Guide, the location and altitude are covered by four surface temperature categories. As a starting point, these categories can be defined from Table 7.2.1, with the locations shown in Figure 7.2.1. However, the climate in the UK is not uniform so that the definitions of the categories are only intended to be a general guide and consideration should be given to the local climate. For example, variations in average temperatures can be found in deep valley floors and around coastlines. In particular, the moderating influence of the Gulf Stream should be considered where appropriate. The critical factor is the road surface temperature at the time of surface dressing and immediately afterwards. At lower temperatures, there is less opportunity for the chippings to be embedded in the substrate and, hence, more binder is required and/or a different type of surface dressing may be preferable to hold the chippings during the winter.

© Crown copyright 2015, data supplied by the Met Office

Figure 7.2.1 – Locations to determine approximate Surface Temperature Categories over Meteorological Office data on mean summer maximum temperatures

Approximate Location	Altitude above sea level	Surface Temp. Category	
South – England, south of Liverpool to Middlesbrough,	200 m or less	А	
excluding Devon and Cornwall	Over 200 m	_	
Central – England north of Leeds to Middlesbrough, Devon, Cornwall, Wales, Northern Ireland and Scotland south of	200 m or less	В	
Glasgow to Aberdeen	Over 200 m	0	
North – Scotland, north of Glasgow to Aberdeen.	200 m or less	С	
North Cooland, north of Clasgow to Aberdeen.	Over 200 m	D	

Table 7.2.1 – Approximate Surface Temperature Categories

The background of Figure 7.2.1 is the maximum summer temperature averaged between 1981 and 2010 from the Meteorological Office website. The map shows the extent of local variation that needs to be considered when identifying which category to allocate to a site. Local knowledge is necessary, with most Highway Authorities holding road sensor information that will enable them to identify road temperatures at any time during the year; such data can be used to check whether the location is typical of its geographic position.

7.2.2 **Road hardness**

Road hardness (RH) is a property that represents the resistance of an existing road surface in a particular location to the embedment of chippings and is particularly important for soft and very soft surfaces. As such, it is a property influenced by the local climate as well as the surfacing material because the hardness of all asphalt surfacing material is temperature dependent. The property is a fundamental component of the existing road surface in the specific location that is used to select the correct size of chipping. If there are areas with significant visual differences in the surfacing, the site should be divided up into such areas. A representative length of the nearside wheel-track in each lane of each area should be selected with no length representing more than 1 lane kilometre. Measurements are made on each representative length using the method described in BS 598-112 (BSI), using a hardness probe*. For the test, the surface temperature, which should preferably be between 15 °C and 35 °C, is recorded and the hardness category determined from the mean of a set of ten penetration readings using the graphs in Figure 7.2.2. It is also possible to use the Mexe-probe CBR with the tip as defined in BS 598-112.

Particular attention should be paid to determining the hardness category when Figure 7.2.2 indicates a category close to an adjacent hardness band. Interpolation between the graphs for areas close to a change in Surface Temperature Category may be necessary. Negative textured road surfaces (TSCS) are always 'hard' as the probe comes into contact with hard aggregate in the interstices.

http://www.materialstestingeguip.com/contact.htm

^{*} BS 598 - 112: Method for the use of road surface hardness probe

Hardness Probe Suppliers

Materials Testing Equipment Limited. Gilwilly Industrial Estate, Penrith, Cumbria. CA11 9BQ Tel: 01768 865302

Ideally, road hardness should be measured in the season prior to that in which the surface dressing is to be carried out. An alternative to *in situ* assessment is the use of 150 mm diameter cores that have been extracted from the road for some other purpose; these can be tested for hardness in the laboratory.

Concrete road surfaces present extreme resistance to embedment of chippings under the action of traffic and are classified as 'very hard'. Conversely, patched areas of asphalt surfacings are usually softer than the rest of the road and may need to be considered separately from the rest of the site.

Category A (South below 200m)

Category B (South above 200m, Central below 200m)

Category C (Central over 200m and North below 200m)

Category D. (North over 200m)

Figure 7.2.2 – Hardness categories from depth of penetration and road surface temperature for different Surface Temperature Categories (see Table 7.2.1)

7.2.3 Traffic categories

A major factor in selecting a type of surface dressing is the anticipated volume of traffic that each lane of the road is required to carry. Because medium and heavy vehicles cause most of the embedment of chippings, the principal measure of traffic for design purposes is the number of medium and heavy vehicles per day currently travelling in the lane under consideration. Medium and heavy vehicles are defined as vehicles with a gross weight in excess of 3.5 tonnes and the day is nominally a 24 hour period. However, a manual count would usually be made between 06.00 and 22.00 hours and the value obtained multiplied by 1.06 to estimate the 24-hour figure.

Eight traffic categories (A to H) are used in the design method. (Other traffic categories using different demarcation values are referred to in Road Note 39 for which the classifications have been set by others for other uses – in particular, Table 7.3.1 for polished stone value requirements and sub-Clause NG 922 of the *Notes for Guidance for the Specification for Highway Works* (MCHW 2) for macro-texture performance requirements). The relevant category for a lane can be obtained for a particular site from Table 7.2.3. For dual carriageways and other major roads, the traffic flows should be known and can be used directly.

As an alternative for other roads, the New Roads and Street Works Act (House of Commons, 1991) road type can be combined with an estimate of whether it is in the upper or lower section of the classification. The Act mandated Highway Authorities to categorise their roads by traffic flows in order that they can inform the Statutory Undertakers of the standard to which repairs to excavation have to

be carried out. Whilst the categories are in terms of million standard axles (msa) during the design life, the Highway Authorities will have derived these data from knowledge of the traffic flow, including medium and heavy vehicles. Therefore, the Highway Authorities should have access to a representative traffic flow (in medium and heavy vehicles per day) which can be a guide to the designer.

Where no information is available to enable road categories to be derived, reference should be made to 'Well Maintained Highways - Code of Practice for Highway Maintenance Management" Section 8, Table 1 Carriageway Hierarchy.

http://www.ukroadsliaisongroup.org/en/UKRLG-and-boards/uk-roads-board/wellmaintainedhighways.cfm

The conversion to the categories used in this Road Note has been calculated on a 2% growth rate. In the event of no information being available, a manual count can be made. The count should be over at least an hour and be at an appropriate time for the local traffic pattern; the conversion to daily rate will depend on the time when the count is made and the local traffic pattern.

On two-way roads with one lane in each direction, the traffic on each lane is assumed to be half the sum in both directions. On single-track roads, the total traffic must be used. Narrow roads with the two directions sharing a common offside wheel-track should be designed with half the total traffic for the nearside wheel-tracks and with all the traffic for the central one.

Lane 1 (i.e. the nearside or left-hand lane) of both dual carriageway and three-lane roads usually carries the majority of medium and heavy vehicles. Conversely, in urban streets, parked vehicles may force moving traffic towards the crown of the road. Therefore, it is necessary to consider different specifications for each lane of multi-lane roads. The proportion of medium and heavy traffic using lane 1 of a multi-lane carriageway can be calculated according to Figure 3.3 of HD 24 (DMRB 7.2.1). The remaining medium and heavy traffic on a 3-lane motorway should be using lane 2 as they are excluded from Lane 3. For surface dressing purposes, it is usually adequate to estimate that two-thirds of the medium and heavy vehicles are in Lane 1 and one-third in Lane 2 of a 3-lane dual carriageway.

Medium & heavy vehicles / lane / day	0 to 50	51 to 125	126 to 250	251 to 500	501 to 1250	1251 to 2000	2001 to 2500	2501 to 3250	Over 3250
Traffic Category	Н	G	F	Е	D	С	В	В	А
NRSWA Road Type	4	4	3	3	2	1	1	0	0

Table 7.2.3 – Traffic Categories

7.2.4 Traffic speed

On lower category roads, or individual lanes of roads (traffic categories H, G and F), on which the traffic is moving at relatively high speeds, this needs to be taken into account in the selection of the type of surface dressing (Figures 8.3a and 8.3b). Where the surface dressing is likely to be subjected to regular high speeds (i.e. permitted speed of 50 mph and above), consideration should be given to a stronger surface dressing such as a racked-in or double surface dressing which are recommended on the more heavily-trafficked roads (Figure 8.3b).
7.2.5 Surface condition

The overall condition of the existing surfacing is important in determining the most appropriate type of surface dressing in order to improve durability for certain surface conditions. The Design Guide uses surface condition categories for the purposes of selecting the type of surface dressing (Figures 8.3a and 8.3b) which are:

- Very binder rich
- Binder rich
- Normal
- Texture in wheel tracks
- Binder lean/Porous

For variable road hardness see RSTA Code of Practice.

Allocation to a particular category is a subjective assessment that should be carried out by an experienced person.

7.2.6 Highway layout

The gradient, the tightness of bends and the extent of any super-elevation will affect the stresses imposed by vehicles on the road surfacing. Similarly, there are additional stresses due to sharp deceleration and turning at junctions and crossings. Therefore, when considering the appropriate type of surface dressing, the inclusion of some of these factors needs to be considered to ensure that a sufficiently robust surface dressing is designed and constructed. The following categories are used in the selection of the type of surface dressing (Figures 8.3a and 8.3b):

- Gradient up to 5 % gradient; 5 % to 10 % gradient; and over 10 % (1 in 10) gradient.
- Radius of curvature under 100 m radius; 100 250 m radius; and over 250 m radius
- Junction or crossing approach; and non-approach

The presence and extent of lengths for which different categories apply should be taken into account in deciding whether to divide a site for the purposes of design (Section 8.2). The gradient for representative lengths of a site can be obtained as described in Sub-Section 7.4.2. The radius can be obtained from surveys from TRACS or SCANNER data or on site using two tapes. If a 30 m tape is stretched with both ends on the edge of the kerb, the radius can be categorized by the distance that the 15 m mark is from the kerb as:

- Under 100 m radius when the distance is over 1.13 m
- 100 m to 250 m radius when the distance is between 0.45 and 1.13 m
- Over 250 m radius when the distance is less than 0.45 m

7.3 Parameters for selection of materials

7.3.1 Skid-resistance

One reason for surface dressing a road may be inadequate skid-resistance in the context of the Highway Authority's skid policy. Skid resistance is influenced by both the macro-texture of the road surface and the micro-texture of the aggregate.

Investigatory levels for the Strategic Road Network are given in HD 28/15 (DMRB 7.3.1) for various classifications of site in terms of the skid-resistance, as defined by the Mean Summer SCRIM

Road Note 39 (Seventh Edition)

Coefficient (MSSC), at either 50 km/h or 20 km/h, with the SCRIM values being measured by a Sideway-force Coefficient Routine Investigation Machine.

The PSV of the aggregate in the road surface and the flow of medium and heavy vehicle traffic have been found to correlate with the skid-resistance of the road for a particular material type. The relationships between skid-resistance, traffic and the required PSV of the aggregate have been established and HD 36 sets out the required minimum PSV of chippings for new construction and maintenance works on trunk roads and motorways. The requirements for different areas of a site can be found using Table 3.1 in HD 36 and, for traffic levels of 250 cv/lane/day or less, and Table 7.3.1 below (Warwickshire County Council).

However, although the skidding requirements may vary along a site, the use of different aggregates of varying PSV on the different lengths of a site is usually impractical.

Note: Further information related to local roads is available from www.rsta-org/publications.

For traffic levels over 250 cvld refer to IAN 156 Table 3.1a for guidance on selecting the minimum PSV for a given investigatory level, traffic level and site category and Table 3.3 in HD36/06 part of the DMRB for guidance on selecting AAV related to traffic levels. Experience shows that a maximum AAV of 8 performs well on heavily trafficked high speed roads however for more lightly trafficked roads blastfurnace slag with AAV above 8 has also shown good performance.

Site Description	Minimum PSV required for given IL, traffic level and type of site						
	IL	Traffic (cv/lane/day) at design life					
		0-20	21-100	101-250			
Single carriageways and dual	0.35	50	50	50			
carriageways where traffic is	0.40	50	50	50			
generally free-flowing on a relatively straight line.	0.45	55	55	55			
Approaches to major and	0.45	55	55	55			
minor junctions or other hazards on all-purpose single	0.50	55	55	60			
carriageways and dual carriageways where frequent or sudden braking occurs but in a generally straight line, including pedestrian crossings and mini- roundabouts	0.55	60	60	65			
	0.45	55	55	55			
Gradients (>5%) longer than 50 m	0.50	55	55	60			
	0.55	60	60	65			
Bends on all types of road (<500 m radius); roundabout	0.45	55	60	60			
(<500 m radius); roundabout circulation areas except mini	0.50	60	60	65			
roundabouts; approaches to hazards that require combined braking and cornering.	0.55	65	68+ or HFS	68+ or HFS			

Table: 7.3.1 Recommended PSV levels for less heavily trafficked local roads

Notes: 1. Shaded lines are the proposed default Investigatory levels for each Site Description but each authority will have a skid policy which defines the IL for their network ref HD28.

2. Where '68+' material is listed in this Table, none of the three most recent results from consecutive tests relating to the aggregate to be supplied shall fall below 68.

3. HFS means that high friction surfacing complying with MCHW 1 Clause 924 will be required.

4. Refer to HD36 for sites carrying more than 250 cvld in the absence of a local skid policy.

7.3.2 Seasons

Surface dressing is a seasonal activity primarily because the long-term stability of the treatment is dependent upon the chippings becoming embedded in the substrate and/or reoriented into a stable mosaic before the onset of cold weather. If a stable mosaic does not form, the chippings are liable to be removed by traffic. The general principle is that larger chipping sizes should be used as early in the season as possible because they are more dependent on embedment for stability. Use of modified binders may reduce the susceptibility of a surface dressing to early failures. Double and multiple-layered surface dressings have better aggregate interlock and are, therefore, much less susceptible to failures due to lack of embedment.

The seasons that apply in the UK for the surface dressing products are given in Figure 7.3.2.

The surface dressing types are coded for convenience in Figures 7.3.2, 9.2.1, 9.2.2 and 9.2.3. S is for single, D for double and R for racked-in and the chipping sizes are the maximums so S6 is a 2.8/6.3 chipping single surface dressing.

Surface Temperature Category A & B (refer to 7.2.1)

Feb Mar Jun Aug Nov Dec Size & Type of Surface Dressing Jan Apr May Jul Sep Oct 8/14 mm single S14 6.3/10 mm single S10 8/14 & 2.8/6.3 mm racked-in R14 Early Late 2.8/6.3 mm single S6 Season Season 6.3/10 & 2.8/6.3 or 2/4 mm racked-in R10 8/14 & 2.8/6.3 mm double D14 6.3/10 & 2.8/6.3 double D10

Surface Temperature Category C & D (refer to 7.2.1.)

High risk Surface dressing should not be undertaken because of the probability of failure.

Significant There is some risk of failure (higher in late season) so extra care in the design and execution of the system is required. There is a good possibility of success in favourable weather conditions.

Low risk Normally successful provided the weather conditions are appropriate for the product.

Notes: 1. The surface temperature categories refer to those detailed in sub-section 7.2.1

- 2. Late season work on fast, heavily-trafficked roads is not recommended because of the consequences of any failure.
- 3. 2.8/6.3 mm chippings should not be substituted for 6.3/10 mm chippings just to allow late season working.

Figure 7.3.2 – Surface Dressing Season

The seasons are only a guide because the weather in any one year may be such that the period when surface dressing can be expected to be carried out successfully may be reduced or extended to take account of:

- High humidity conditions
- Long-term weather forecasts
- The consequences that would result from a failure, usually determined by the class of road to be dressed
- Overnight temperatures
- Other local situations

Therefore, although Figure 7.3.2 takes account of the effect that different surface temperature categories have on the surface dressing season, it should be understood that the season can also be affected by other regional and climatic variations. Figure 7.3.2 should be regarded as a guide and contracts compiled on the basis of a performance-related or end-product specification, where the risk is the responsibility of the contractor, should not be restricted.

Late season single 10mm surface dressing has the highest proportion of failures due to low overnight temperatures and a higher risk of poor weather in the weeks following the work.

Any sites dressed in the 'significant risk' periods at the end of the season should be viewed as late season work and, therefore, more susceptible to winter failures. Accommodation for this factor should be made by increasing the rate of application of binder using the factor given in Table 9.2.6. However, the application of additional binder, whilst increasing the probability of surviving the following winter, will also increase the risk of fatting up during subsequent summers. Thick films take longer to fully break than thin ones so it may be prudent to switch from a Racked-in to a double surface dressing in late season.

Within any season, no binder is totally tolerant of extreme weather conditions. Emulsions will break slowly in cold or wet conditions or when the humidity is high. When the humidity is over 80 %, emulsion break can be delayed and breaking agents may become necessary (for e.g. high speed and heavily trafficked roads). Rain can also adversely affect binder systems, principally the initial adhesion of chippings.

Weather forecasts should always be obtained before carrying out surface dressing operations.

7.4 Parameters for adjustment to local conditions

7.4.1 Surface condition

Local variations in the condition of the existing surfacing need to be allowed for in the rate of spread of binder. The variations should be such that for all conditions:

- Sufficient binder is present for the initial retention of the chippings prior to longer term embedment.
- Excess binder is avoided which could fat up.

For the purposes of the local corrections in Table 9.2.6, the five categories of surface condition are:

- Very binder rich
- Binder rich

Texture in wheel tracks

Binder lean/Porous

Normal

As for the overall surface condition (Sub-Section 7.2.5), allocation to a particular category is a subjective assessment, which should be carried out by an experienced person. Allowance should be made for asphalt substrates less than one year old, which tend to have a relatively high binder demand. The texture depth of the existing surface, determined in accordance with BS EN 13036-1 or from machine surveys can be used to assess the extent to which an asphalt surface is open-textured, thus requiring more binder.

Surface dressing is increasingly being specified as a maintenance treatment for negative texture road surfaces. On such surfaces it is important to provide some sort of seal to the surface in order that the binder does not seep into the open textured surface, leaving insufficient to hold the chippings of the surface dressing in place. A pad coat surface dressing layer, followed by a second layer of single or racked-in surface dressing to provide the specified surface characteristics has been used successfully. See RSTA Code of Practice.

7.4.2 Gradient

The gradient of the road affects stresses imposed on its surfacing, since traffic travelling uphill tends to push chippings into the road surface whereas traffic travelling downhill has the opposite effect and can provide more surface stress due to braking. In the Design Guide, five categories of gradient are used for the purposes of local corrections in Table 9.2.6:

- Over 10 % (1 in 10) uphill gradient
- 5 % to 10 % uphill gradient
- Less than 5 % gradient

- 5 % to 10 % downhill gradient
- Over 10 % downhill gradient

The gradient can be obtained from SCANNER or TRACS surveys or on site using a 1 metre straight edge and measuring the distance between the bottom of the straight edge and the road when the straight edge is held in a level position. The distance expressed in centimetres is equal to the gradient in percent.

7.4.3 Shade

Areas of asphalt road surface shaded by trees, or in the shadow of buildings, bridges or tunnels, tend to be cooler and thus more resistant to chipping embedment than areas in the sun. To account for this effect, the rate of spread of binder should be increased in shady areas by the amount shown in Table 9.2.6. This correction is not required for concrete surfaces.

7.4.4 Local traffic

Some areas of a road may be subject to significantly less traffic than the rest, but may not be sufficiently large to warrant a separate design. Such areas include hard shoulders and edge strips on dual carriageways (unless a contra flow is planned) and sizeable areas with hatched lines to exclude traffic. All these areas are effectively untrafficked and the rate of application of binder should be increased in order to compensate for the lack of embedment of chippings.

8. SELECTION OF TYPE OF SURFACE DRESSING

Reference should be made to Chapter 2 for schematic representation of the different types of surface dressings and to the RSTA/ADEPT Code of Practice for Surface Dressing.

8.1 Suitability of existing surface characteristics

Figure 8.1 indicates the limits of performance that may be expected for a given substrate condition and should be considered when performance levels are specified. Specifications should not demand higher levels of performance than the existing road characteristics permit.

Except where "Yes" is shown in Figure 8.1, an experienced surface dressing designer should be consulted and it may be necessary to accept a reduced life. Options include higher binder application rate or smaller chipping size for porous areas and reduced binder rate or larger chippings in the wheel tracks of soft roads. Inverted double surface dressings may provide a solution to seal porous areas and to normalise variable existing surfaces.

Double surface dressings and sandwich surface dressings with Premium Grade emulsion or Super-Premium Grade have greater stability. Although macro-texture may not be as great initially as for a single or racked-in surface dressing, they resist loss of macro-texture with time and traffic. They are also used where initial stability is critical and excess chippings are unacceptable; this may include areas where there are pedestrians.

If the surface characteristics include crazing or cracking, the structural condition of the pavement is suspect and the surface dressing can only be a temporary measure. However, the waterproofing properties of surface dressing, especially when combined with geotextile fabric or fibres, may reduce moisture in the structure and improve the condition (RSTA/ADEPT Code of Practice for Surface Dressing and RSTA/ADEPT Guidance on the use of Stress Absorbing Membrane Interlayers (SAMI) in Surface Dressing).

Existing surface characteristic	Н	G	Т F	raffic Cate	egory D	С	В	A
Very Hard and homogeneous	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Hard and homogeneous	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Normal and homogeneous	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Soft and homogeneous	Yes	Yes	Yes	Yes	Texture	Texture	Е	
Very Soft and homogeneous	Yes	Yes	Yes	Texture	Е	Е		
Fatting up in wheel tracks	Yes	Yes	Texture	Texture	Е	Е		
High macro-texture or fretted	Yes	Yes	Yes	Yes	Defects	Defects	E	
Porous	Yes	Yes	Yes	Defects	Defects	Е		
Very variable	Defects	Defects	Defects	Defects	Defects	Е	Е	
Extensive patching	E	E	E	E	E			
Severe bleeding & extensive blackening								

- Yes The surface dressing can be designed to meet the most onerous performance requirements in terms of macro-texture and levels of defects to BS EN 12272-2 (BSI).
- Texture It is difficult to maintain high macro-texture, especially in the wheel tracks and for highspeed roads. Texture requirements for low speed roads may be achievable.
- Defects It is difficult to design a surface dressing that will meet the most onerous requirements for the test method of visual assessment of defects to BS EN 12272-2 (BSI) and the requirements should not be specified.
 - In some circumstances, a suitable surface dressing may be designed by an expert to meet less onerous performance levels. Extra care in execution is required.

Surface dressing is not an appropriate treatment.

Figure 8.1 – Effect of Existing Road Surface Characteristics on Achievable Performance Levels

8.2 Sections within a site

Е

The surface of a road to be surface dressed may vary, either longitudinally or transversely, along its length. Therefore, it may be reasonable, and indeed desirable, to divide a site into different sections and apply different surface dressings and/or components to sections of road which are subject to different traffic stresses, such as different lanes of dual carriageways, junctions, substantial lengths of roads with sharp bends or steep gradients. Also sites which are subjected to regular on street parking should be treated differently.

However, it is not practical to change the type or components of the surface dressing at frequent intervals along the site and the designer will need to rationalise any changes into long sections for which they are essential and practical. Local changes in surface condition may be best catered for by selecting a type of surface dressing and components applicable to address the worst condition to be met within the section, or locally applying extra binder where problems of shaded areas / short steep

gradients etc need to be overcome. Such changes on site demand the employment of experienced personnel, trained to recognise possible problem areas and implement the required action.

8.3 Type of surface dressing for a section

The types of surface dressing available are illustrated in Section. Figures 8.3a and 8.3b give recommendations for the type of surface dressings which can be expected to be the most successful under different circumstances. Figure 8.3b (for more highly trafficked roads) gives advice on the more sophisticated surface dressings. For those options with modified binders, the choice of Intermediate or Premium Grade Emulsion will depend on the severity of the traffic stresses and other factors such as:

- the condition of the existing surface (Figure 8.1);
- the need to reduce initial chipping loss;
- the need to protect pedestrians e.g. from binder pick up on shoes;
- the resisting of damage by parked cars; and
- pressure to open the road quickly.

Whilst Figures 8.3a and 8.3b can be used to identify one type of surface dressing that is suitable for consideration, the type selected is not necessarily the only one that can be used in the circumstances. Further, there may be reasons, other than those included in the decision tree, for using a different type. The effect of tyre/road noise generation is one example where careful design of double surface dressing may satisfy the macro-texture requirements and also reduce noise from traffic. This is of increasing importance in urban areas.

The type indicated in Figures 8.3a or 8.3b may be regarded as over- or under-design, in which case consideration should be given to a less or more expensive option, respectively. Possible reasons could include when the road has a limited structural life, when the traffic intensity is expected to change in the foreseeable future or when the road has a strategic importance for reasons other than traffic flow. All these considerations should be taken into account when choosing the most appropriate type of surface dressing.

Note 1: High-friction surfacing may be considered depending on site difficulty and quality of substrate. For further information refer to RSTA/ADEPT Code of Practice for High Friction Surfacing

Note 2: Where initial stability is required (junctions to major roads, pedestrian areas, fast commuter runs, on-street parking, etc.), Intermediate Grade Binder or above may be required. Double surface dressings have greater stability than racked-in surface dressings and are more tolerant of varying surface condition and road hardness. Racked-in and double surface dressings may assist prevention of tearing at junctions, slip lanes, on hills, etc.

Figure 8.3a – Selection of Type of Surface Dressing for Lightly-Trafficked Sites

- Note 1: High-friction surfacing may be considered depending on site difficulty and quality of substrate.
- **Note 2:** On high stress sites Super Premium Grade binder may be more appropriate.
- **Note 3:** Where initial stability is required (junctions to major roads, pedestrian areas, fast commuter runs, on-street parking, etc.), Intermediate Grade Binder or above may be required. Double surface dressings have greater stability than racked-in surface dressings and are more tolerant of varying surface condition and road hardness. Racked-in and double surface dressings may assist prevention of tearing at junctions, slip lanes, on hills, etc.

9. DESIGN CONSIDERATIONS OF SURFACE DRESSING CHIPPINGS AND BINDERS

9.1 Chippings – rates of spread

9.1.1 Single surface dressing

The quantity of chippings applied must be sufficient to cover the film of binder. The chippings should be spread at a rate to achieve 100 to 105 % shoulder to shoulder coverage determined by BS EN 12272-1 (BSI). The specific quantity required will depend on factors such as the size, shape and relative density. However, guidance for estimating quantities is given in Table 9.1.1.

Table 9.1.1 – Typical range of rate of spread of chippings for single surface dressings to achieve shoulder to shoulder cover

Nominal size of	Range of Spread Rates					
chipping	(kg/m²)	(m²/tonne)				
2.8/6.3 mm	8 – 11	125 – 91				
6.3/10 mm	10 – 14	100 – 71				
8/14 mm	12 – 16	83 – 62				

9.1.2 Racked-in surface dressing

The primary chipping should be spread to provide about 90 % shoulder to shoulder coverage (Heslop *et al.*, 1982) as measured by BS EN 12272-1 (BSI). If combinations of chippings are used in which the secondary chippings are large relative to the primary (e.g. 6.3/10 mm and 2.8/6.3 mm instead of 6.3/10 mm and 2/4 mm), the rate of spread of primary chippings may need to be reduced further in order to leave interstices for the secondary chippings.

The secondary chippings should be spread so that there is an excess. The amount necessary will depend on the ratio of the two sizes used, location and the method of spreading. At minor junctions and other locations where traffic will turn across the new surface dressing, it is advantageous to use a greater excess of smaller chippings in order to reduce the possibility of damage from turning traffic in the early life of the surface dressing.

9.1.3 Double surface dressing

The rate of spread of the first layer should be 95 % shoulder-to-shoulder coverage as measured by BS EN 12272-1 (BSI). The second layer should be 100 to 105 % based on the same method of measurement. The actual quantity required will depend upon factors such as the size, shape and

relative density of the chippings. Chippings should be selected on the same basis as for racked-in surface dressings (Sub-Section 9.1.2).

9.1.4 Inverted double surface dressing

Both layers of chippings should be spread to achieve 100 to 105 % shoulder-to-shoulder coverage as measured by BS EN 12272-1 (BSI). All surplus chippings from the first layer must be removed before the second layer of chipping is applied.

9.1.5 Sandwich surface dressing

The rate of spread of chippings is as for double surface dressings (Sub-Section 9.1.3).

9.2 Rate of spread of bituminous emulsion binder and chipping sizes for various combinations of traffic categories and surface hardness

9.2.1 Single surface dressings

The design of the binder spread rate for single surface dressings is done by reference to Table 9.2.1 with the binder rate then being adjusted for different local conditions from Sub-Section 9.2.6. The rate of spread of binder, after adjusting for secondary factors as described in Sub-Section 9.2.6, is based on 67 % binder content bitumen emulsions and needs to be adjusted if a different binder content emulsion is used.

		Hardness Category of Road Surface								
ry	Very I	Hard	На	rd	Norn	nal	So	ft	Very Soft	
Traffic Category	Size of Chipping	Binder Rate	Size of Chipping	Binder Rate	Size of Chipping	Binder Rate	Size of Chipping	Binder Rate	Size of Chipping	Binder Rate
Ĩ		(L/m²)	(mm)	(L/m²)	(mm)	(L/m²)	(mm)	(L/m²)	(mm)	(L/m²)
А	(a)	(a	(a)		(a)		(b))
В	S10	1.8 ^(c)	(a	a)	(a)	(a)		(b)		
С	S10	1.8 ^(c)	S10	1.6 ^(c)	(a)	(a) (a)		(b))	
D	S6	1.5 ^(c)	S10	1.6 ^(c)	(a)	(a) (a))	(a	a)
Е	S6	1.5 ^(c)	S10	1.6 ^(c)	S10	1.6 ^(c)	S10	1.6 ^(c)	(a	a)
F	S6	1.5 ^(c)	S6	1.5 ^(c)	^(c) S10 1.6 ^(c) S10 1.6 ^(c)		I.5 ^(c) S10 1.6 ^(c) S10 1.6 ^(c)		(a	a)
G	S6	1.5	S6	1.5	S6 1.5 S10 1.6		(a	a)		
Н	S6	1.5	S6	1.5	S6	1.5	S6	1.4	S6	1.4

Table 9.2.1 – Recommended Nominal Size of Chipping and Target Rates of Spread of Binder at
Spraying Temperature for Single Surface Dressings

Notes: (a) Multiple layer surface dressing preferred – see Figures 8.3a and 8.3b.

(b) Conditions not suitable for single surface dressings – see Figure 8.3b.

(c) Polymer-modified versions of this type of binder are preferred in those conditions – see Section 5.3.4 and Figure 8.3b.

d) The surface dressing types are coded for convenience: S is for single and the chipping sizes are the maximums so S6 is a 2.8/6.3 chipping single surface dressing and S10 is a 6.3/10 chipping.

9.2.2 Racked-in surface dressings

The design of binder spread rate for racked-in surface dressings is done by reference to Table 9.2.2 with the binder rate then being adjusted for different local conditions from Sub-Section 9.2.6. The rate of spread of binder, after adjusting for secondary factors as described in Sub-Section 9.2.6, is based on 67 % binder content bitumen emulsions and needs to be adjusted if a different binder content emulsion is used.

Table 9.2.2 – Recommended nominal size of chippings and target rates of spread of binder at
spraying temperature for racked-in surface dressings

		Hardness Category of Road Surface									
Ž	Very Hard Hard		No	Normal		Soft		y Soft			
Traffic Category	Size of Chipping ^(d)	Binder Rate	Size of Chipping ^(d)	Binder Rate	Size of Chipping ^(d)	Binder Rate	Size of ^(d)	Binder Rate	Size of Chipping ^(d)	Binder Rate	
		(L/m²)	(mm)	(L/m²)	(mm)	(L/m²)	(mm)	(L/m²)	(mm)	(L/m²)	
А	R10	1.9 ^(c)	R14	2.1 ^(c)	R14	2.0 ^(c)	(b)		(b)		
В	R10	1.9 ^(c)	R10	1.8 ^(c)	R14	2.0 ^(c)	(b)		(b)		
С	R10	1.9 ^(c)	R10	1.8 ^(c)	R14	2.0 ^(c)	((b)	(b)		
D	R10	1.9 ^(c)	R10	1.8 ^(c)	R14 R10	2.0 ^(c) 1.8 ^(c)	R14	2.0	R14	1.9	
Е	R10	1.9 ^(c)	R10	1.8 ^(c)	R10	1.8 ^(c)	R14 R10	2.0 1.8	R14	1.9	
F	R10	2.0 ^(c)	R10	1.9 ^(c)	R10	1.9 ^(c)	R10	1.8	R10	1.6	
G	R10	2.0	R10	2.0	R10	1.9	R10	1.9	R10	1.7	
Н	(a)	(a)	(a)	R10	1.9	R10	1.7	

- Notes: (a) Racking-in system considered unnecessary in most circumstances, single dressing sufficient see Figure 8.3a.
 - (b) Conditions not suitable for racked-in surface dressings see Figure 8.3b.
 - (c) Polymer modified versions of this type of binder are preferred in those conditions see Section 5.3.4 and Figure 8.3b.
 - (d) The surface dressing types are coded for convenience: R is for racked-in surface dressing and the chipping sizes are the maximums so R10 is a 6.3/10 mm primary chipping layer racked-in with a 2.8/6.3 or a 2/4mm chipping.

9.2.3 Double surface dressings

The design of binder spread rate for double surface dressings is done by reference to Table 9.2.3 with the binder rate then being adjusted for different local conditions from Sub-Section 9.2.6. The rate of

spread of binder, after adjusting for secondary factors as described in Sub-Section 9.2.6, is based on 67 % binder content bitumen emulsions and needs to be adjusted if a different binder content emulsion is used.

	Hardness Category of Road Surface															
	Ve	ery Ha	rd		Hard			Norma	al		Soft	1	Ve	ry Sof	y Soft	
Traffic Category	Size of Chipping ^(c)	Binder Rate, first layer	Binder Rate, second layer	Size of Chipping $^{(c)}$	Binder Rate, first layer	Binder Rate, second layer	Size of Chipping $^{(c)}$	Binder Rate, first layer	Binder Rate, second layer	Size of Chipping $^{(c)}$	Binder Rate, first layer	Binder Rate, second layer	Size of chipping ^(c)	Binder Rate, first layer	Binder Rate, second layer	
		(L/	′m²)	(mm)	(L	/m²)	(mm)	(L/	/m²)	(mm)	(L/	m²)	(mm)	(L/r	n²)	
А	D10	1.1	1.2 ^(b)	D14 D10	1.2 1.0	1.3 ^(b) 1.2 ^(b)	D14 D10	1.2 1.0	1.1 ^(b) 1.0 ^(b)		(a)			(a)		
В	D10	1.1	1.2 ^(b)	D14 D10	1.2 1.0	1.3 ^(b) 1.2 ^(b)	D14 D10	1.2 1.0	1.1 ^(b) 1.0 ^(b)		(a) (a)		(a)			
с	D10	1.1	1.2 ^(b)	D10	1.0	1.2 ^(b)	D14 D10	$\begin{array}{c cccc} 1.2 & 1.1^{(b)} \\ 1.0 & 1.0^{(b)} \end{array} \qquad (a)$		(a)			(a)			
D	D10	1.1	1.2 ^(b)	D10	1.0	1.2 ^(b)	D14 D10	1.2 1.0	1.2 ^(b) 1.1 ^(b)	D14	1.0	1.1	D14	0.8	1.0	
Е	D10	1.1	1.2 ^(b)	D10	1.1	1.2 ^(b)	D10	1.0	1.1 ^(b)	D14 D10	1.0 0.8	1.1 1.0	D14	0.8	1.0	
F	D10	1.2	1.2 ^(b)	D10	1.1	1.2 ^(b)	D10	1.0	1.1 ^(b)	D14 D10	1.0 0.8	1.2 1.1	D14	0.8	1.1	
G	D10	1.2	1.3 ^(b)	D10	1.1	1.3 ^(b)	D10	1.0	1.2 ^(b)	D10	1.0	1.1	D10	0.8	1.0	
Н	D10	1.2	1.3 ^(b)	D10	1.1	1.3 ^(b)	D10	1.0	1.2	D10	1.0	1.1	D10	0.8	1.0	

Table 9.2.3 – Recommended nominal size of chippings and target rates of spread of binder at spraying temperature for double surface dressings

Notes: (a) Conditions not suitable for double surface dressings – see Table 8.3b.

(b) Polymer-modified versions of this type of binder are preferred in those conditions – see Section 5.3.4 and Table 8.3b.

(c) The surface dressing types are coded for convenience: D is for double surface dressing and the chipping sizes are the maximums so D10 is a 6.3/10 mm primary chipping layer followed by a 2.8/6.3 secondary chipping layer.

9.2.4 Sandwich surface dressings

The design of binder spread rate for sandwich surface dressings is done by reference to Table 9.2.4 with the binder rate then being adjusted for different local conditions from Sub-Section 9.2.6. The rate of spread of binder, after adjusting for secondary factors as described in Sub-Section 9.2.6, is based

on 67 % binder content bitumen emulsions and needs to be adjusted if a different binder content emulsion is used.

Primary Chipping Size	8/14 mm	6.3/10 mm	6.3/10 mm
Secondary Chipping Size	2.8/6 mm	2.8/6 mm	2/4 mm
Binder Spread Rate	1.7 L/m²	1.5 L/m²	1.5 L/m²

Table 9.2.4 – Binder Spread Rates for Sandwich Surface Dressings

9.2.5 Inverted double surface dressings

The binder spread rate for the first layer of an inverted double surface dressing should be as recommended in Table 9.2.1 for single surface dressings using the relevant hardness category with <u>only</u> the adjustment for the relevant road surface condition from Sub-Section 9.2.6 being applied. The binder spread rate for the second layer of an inverted double surface dressing should be as recommended in Table 9.2.1 for single surface dressings and Table 9.2.2 for Racked-in surface dressings using a normal surface hardness category with adjustments as recommended in Sub-Section 9.2.6 other than for road surface condition.

9.2.6 Adjustments for local conditions

The adjustment of the binder spread rates for all types of surface dressings to allow for different local conditions is done by reference to Table 9.2.6. In the case of two layer systems (Double Surface dressings and Inverted Double Surface Dressings), the correction factors in Table 9.2.6 should be applied as follows:

First LayerApply adjustments from Table 9.2.6 for road surface condition only.Second Layer1Apply adjustments from Table 9.2.6 for chipping size and shape.

2 Other adjustments are applied as shown in Table 9.2.6 for normal surface condition and the remaining adjustments as found on site.

Influence Property Comments Effect (L/m²) Season Early and mid-season 0 Late season work is very risky especially with S10, double surface dressing is recommended Late season +0.2if the work has to be completed, see Fig 7.3.2. Aggregate Crushed rock or slag 0 Gravel is only appropriate for Traffic type Categories G and H. +0.1Gravel Flakiness category Shape Flakiness index should conform to PD 6882-2. Adjustment is only required for non-conforming FI10 +0.1aggregates. FI_{15} 0 Very cubical chippings, *FI*₁₀, require more binder to hold them initially. Flaky chippings FI_{20} -0.1 $(>FI_{20})$ may result in early loss of texture FI25 and above Consider depending on traffic. design Shade Un-shaded, open to sun 0 Shaded areas are cooler and, therefore, the road is effectively harder so more binder is +0.1Partially shaded required. Fully shaded +0.2Double surface dressing is recommended for fully shaded areas (see Table 9.2.3). Surface Very binder rich For variable soft binder rich areas a sandwich -0.2 condition surface dressing should be considered. Binder rich -0.1 Above F traffic category if there is tracking due (Consider Normal 0 suitability, to being binder rich, larger chippings should be see considered for the wheel tracks as part of a Texture in wheel tracks +0.1Figure 8.1 double surface dressing. and type of surface dressina +0.2 Binder lean / porous A pad coat is recommended to normalise and Figures 8.3a seal porous road surfaces (see Section 9.2.4). and 8.3b) Consider Double surface dressing with intermediate Very binder lean and porous, high macrobinder is recommended for variable hard and Design texture, or variable and binder lean substrates (see Table 9.2.3). hard. > 5 % uphill -0.2 Gradient The gradient affects the traffic stress on the surface dressing and, therefore, the rate of < 5 % 0 embedment. > 5 % downhill +0.1Racked-in or double surface dressings are recommended for hills and downhill high-speed > 10 % downhill +0.2 sections (see Tables 9.2.2 and 9.2.3). Traffic Roads subject to high-speed traffic induce High speed (≥50 mph limit) +0.1greater surface stress. Racked-in or double Speed Low speed (<50 mph limit) surface dressings with premium binders are recommended. 0 0 Local traffic Design range Un-trafficked areas, such as hatched sections, and also between the wheel tracks and edges Effectively un-trafficked +0.2 of carriageways, require more binder. Hard shoulders, unless a contra flow is planned, and sizeable areas with hatched lines to exclude traffic are effectively untrafficked.

Table 9.2.6 – Secondary factors influencing the rate of spread of binder

Notes:

1. The maximum cumulative adjustment to rate of spread of binder is $+0.4 \text{ L/m}^2$ or -0.2 L/m^2 .

2. Descriptions of the properties are given in Section 7.4

10. SURFACE DRESSING RETREAD AND OTHER FORMS OF RECYCLED ROAD PAVEMENT

There are two forms of recycled pavement. In situ processing, of which the commonest type is "retread", and off-site processing, often adjacent to the site, which involves remixing the excavated pavement in either a hot- or cold-mix asphalt plant. Both these processes will result in a substrate which is, to some degree, porous and, subject to a careful assessment of the degree of porosity, will require an increase in the spray rate of 0.1 L/m^2 to 0.2 L/m^2 above the recommended rates. In most cases, an inverted double dressing should be considered (two single dressings of the same size could be used e.g. 6.3/10 & 6.3/10).

11. SURFACE DRESSING FOOTWAYS AND CYCLEWAYS

11.1 General

The application of surface dressing to footways and cycleways offers the engineer the same benefits as the application of surface dressings to roads, but has several different aspects that must be taken into account. Nevertheless, the same criteria should be adopted as for conventional surface dressings on roads in order to achieve a successful finish.

The binder must be applied at the correct rate of spread and at the correct temperature. If possible, the plant should be purpose-built to carry out the work. Small self-propelled sprayer units with narrow spray bars are available, some of which combine the spraying and the chipping application unit. Separate small self-propelled chipping spreaders are also available as an option to hand-chip spreading.

The principles set out in this document with regard to health and safety, early use and aftercare of roads are equally applicable to footways and cycleways.

11.2 Design

11.2.1 General

Single surface dressings are generally used for footways and cycleways because they use small size aggregate. However, on cement-bound and water-bound construction, double surface dressing is advisable.

On rural footways that are only used occasionally, the prime consideration is durability and extra binder and chippings may be of long term benefit. However, in housing estates and in urban locations, the convenience and safety of footway users must take precedence.

11.2.2 Chippings

The slip resistance on footways and cycleways is not as critical as the skid resistance for road surface dressings, but some Highway Authorities do have slip resistance criteria. Therefore, the PSV of chippings for footway surface dressings is generally not as critical as it is for work on roads. Consequently, the engineer has an opportunity to use materials where colour, shape and local availability of chippings are of greater importance. Nevertheless, the chippings should comply with the requirements of BS EN 13043 (BSI).

The single surface dressing chippings are normally 2/5 mm, a non-standard size between the 2/4 mm and 2.8/6.3 mm sizes with particles in the range 2 mm to 5 mm. The 2.8/6.3 mm size should be used for sites with occasional vehicular traffic and/or heavy pedestrian or cycle traffic. The double surface dressing chippings for use on water-bound pavements or cement bound materials are normally 2.8/6.3 mm for both layers.

11.2.3 Binder

Generally, polymer-modified emulsions are used because of their early cohesion and strength. On sites which are more highly stressed (such as vehicular crossings gaining access to properties), it is recommended that a Premium Grade emulsion is used because these binders are less susceptible to such stresses. Furthermore, double surface dressings are sometimes used for vehicular crossings. The varying weather conditions that have occurred in recent years also provide further support for the use of polymer-modified binders. Polymer modified binders are also very helpful on footways and cycleways to reduce the risk of bleeding and fatting up. The rates of spread are given in Table 11.2.3.

Type of Surface Dressing	Condition of existing surface	Chipping size (mm)	Rate of spread of binder (L/m ²)
Single Surface Dressing	Very binder rich	2/5	1.3
	Binder rich	2/5	1.4
	Normal	2/5	1.5
	Binder lean	2/5	1.6
	Very binder lean	2/5	1.7
Double Surface Dressing	First layer	2.8/6.3	0.9
	Second layer	2.8/6.3	1.4

 Table 11.2.3 – Target Rates of Spread of Emulsion Binder on Footways and Cycleways

The target rates of spread of binder should be corrected using the adjustments in Sub-Section 9.2.6, as is required for surface dressings on roads. However, because of the more limited data for footways and cycleways, the resultant values should only be quoted in a range of \pm 0.1 L/m².

11.3 Application

It is essential when applying surface dressings on footways and cycleways that the users of the site are considered at every stage. The main points to be considered, both on urban and rural sites, are:

- a) Plant and equipment should be suitable for use in the particular surroundings without causing damage.
- b) All ironwork should be properly masked.
- c) Binder should not be allowed to come into contact with gates, walls or surfaces other than those to be dressed.
- d) An extensive uniform application of chippings should be applied to cover all the sprayed area but excessive application should be avoided.
- e) All loose chippings should be swept off as soon as a close mosaic has been established.
- f) Advance warning of the work should be given to local residents.

Footway and cycleway surface dressings are routinely applied before and after the road surface dressing season, although they are best applied during the normal season. Embedment of chippings does not occur on footways in the same way as it does on roads. In footway and cycleway surface dressings, the binder has to provide the bond between the chipping and the surface and adequate rates of spread of binder are essential to achieve this adhesion.

Rolling is usually done with a rubber-coated roller not exceeding 1.5 tonnes, although steel-wheeled rollers can also be used.

12. SURFACE DRESSING FORMATIONS AND SUBGRADES, UNBOUND BASES AND SUB-BASES AND CEMENT-BOUND BASES AND SUB-BASES

The aim of sealing these surfaces using surface dressing is to protect them from weather damage and site traffic during construction. Cementitious materials may be cured by sealing them immediately after laying. Double surface dressings are used on unbound surfaces where they are to be trafficked and single surface dressings are used on cement bound materials. When cement bound materials are to be the final structural layer then a double surface dressing is used.

The recommended components are an unmodified emulsion binder with 67 % bitumen content and 2.8/6.3 mm chippings (used for both layers of double dressings when polymer-modified binders may be considered depending on the intended use).

Type of Chippings	Nominal Size of Chippings	Material Type	Unmodified Bitumen Emulsion	
Crushed rock, gravel and slag	2.8/6.3 mm	Formations and subgrade	Single surface dressing rate of spread 1.8 L/m ² to 2.2 L/m ² depending on surface texture and porosity	
		Unbound base and sub-base	Double surface dressing rate of spread 1.3 L/m ² for each application	
			Cement-bound base and sub-base	Single surface dressing rate of spread 1.8 L/m ² to 2.2 L/m ² depending on surface texture and porosity
		Cement bound base as a temporary road surface	Double surface dressing rate of spread 1.3 L/m² for each application	

Table 12 – Target Rates of Spread of	Binder
--------------------------------------	--------

DESIGN GUIDE FOR ROAD SURFACE DRESSING PART III – APPLICATION OF THE DESIGN

13. SPECIFICATION

13.1 General

Part II of this document utilises the accumulated experience of many specifiers and practitioners over many years to produce designs for surface dressing that will, in all normal circumstances, result in a competent durable surface dressing when carried out by skilled contractors using sound techniques. The resulting design should be satisfactory whether the Client, the Contractor or a consultant carries it out.

This Design Guide is not a contract and should not be used as such, although it may be used to support such a contract. Two types of contract are in common use:

- a recipe specification with design by the Client; and
- a performance specification with design by the Contractor.

It is essential that the allocation of responsibility for the design be made clear in any contract.

Whoever carries out the design must fully understand the surface dressing process and its capabilities because it is impossible to cover all possibilities in any Design Guide. There are some combinations of factors of traffic, turning, braking, surface characteristics and late-season working which make it imperative that a good understanding of the process is held by the designer to ensure success.

There are an increasing number of options for the type of surface dressing and it is recommended that serious consideration be given to using a performance specification where the contractor installs a CE marked Surface Dressing product. In any case, the Contractor should be in possession of a quality assurance certificate to the ISO 9000.

A client wishing to procure on the basis of a recipe specification should use Clause 919 of the MCHW1 (<u>www.standardsforhighways.co.uk/mchw/vol1/index.htm</u>).

13.2 Performance specification with design by contractor

A client wishing to procure on the basis of a Performance Specification should use Clause 922 of the MCHW1 (<u>www.standardsforhighways.co.uk/mchw/vol1/index.htm</u>) or refer to example specifications in Annex A of PD 6689

13.3 Records

13.3.1 General

It is essential to keep accurate and honest records of all surface dressing operations if Clients, Contractors and practitioners are to be able to learn from success and failures and continuously improve on design and construction techniques. Records of past surface dressing work, considered in the light of the subsequent performance, should be used as input in the design for future work.

The essential records required may be treated under two main areas, design details and construction details. In addition, details of any inspection are useful to understand the effectiveness of the options used given the conditions prevailing.

Any data on the texture depth and on the tyre/road noise generation from surface dressings after embedment, together with the values of the design parameters, should be sent to the RSTA so that this aspect of performance may be incorporated more fully in future editions of this Design Guide.

Records should be made available to clients upon request.

13.3.2 Design details

The assessment and design records need to include the following, for which the standard proforma (Figure 6.1) can be retained as the record:

- Road assessment records
- Nature, condition and area of the road surface
- Traffic records
- Design records

13.3.3 Construction details

The construction records need to include the following, for which Table 13.3.3 can be used as a standard proforma:

- Location, date and time
- Weather and road conditions when spraying
- Chippings, details and rate of spread
- Binder details and rate of spread
- Plant details
- Type and amount of compaction
- Signage in use
- Aftercare details
- Weather conditions immediately after the work

Table 13.3.3 is repeated, which may be copied for use in maintaining records, if required.

13.3.4 Inspection details

Some comments from the various inspections carried out after completion of the work may also be recorded on the construction record proforma (Table 13.3.3). The date will indicate whether the inspection is "Day After", "Pre Winter" (after first frost) or "Post Winter however, this proforma may not be suitable for Factory Production Control (FPC) requirements in accordance with BS EN 12271.

Table 13.3.3 – Construction Record Proforma

Date of Construction: / Time Start: Time Finish: Weather: * Sunny Cloudy Showers Drizzle Air Temp: °C Humidity: % Road Condition: * Dry Damp Road Temp.: °C Supplier:
Road Condition: * Dry Damp Road Temp.: C Chippings Supplier: Quarry: Depot: Image: C 1 ^{at} Layer Size: PSV: AAV: Elakiness: Elakiness: Condition: * Dry Damp Sample Ref. No.: Elakiness: Elakiness: Condition: * Dry Damp Sample Ref. No.: Elakiness: Kg/m2 kg/m2 kg/m2 kg/m2 2 nd Layer Size: PSV: AAV: Elakiness: Econdition: * T Area: m2 Ave. rate of spread: kg/m2 kg/m2 2 nd Layer Size: PSV: AAV: Flakiness: Econdition: * T Area: m2 Ave. rate of spread: kg/m2
Chippings Quarry: Depot: 1 st Layer Size: PSV: AAV: Flakiness: 2 nd Layer Size: PSV: AAV: Flakiness: Condition: * Dry Damp Sample Ref. No.: Sample Ref. No.: Tonnage: T Area: m2 Ave. rate of spread: kg/m2 Spot check (box) results: kg/m2 kg/m2 kg/m2 kg/m2 Spot check (box) results: kg/m2 kg/m2 kg/m2 kg/m2 Spot check (box) results: kg/m2 kg/m2 kg/m2 kg/m2 Spot check (carpet tile) results: L/m2 L/m2 L/m2 Spot check (carpet tile) results: L/m2 L/m2 L/m2 2 nd Layer Quantity used: L Area: m2 Ave. rate of spread: L/m2 2 nd Layer Quantity used: L Area:
Supplier: Quarry: Depot: 1 st Layer Size: PSV: AAV: Flakiness: Condition: * Dry Damp Sample Ref. No.: Tonnage: T Area: m² Ave. rate of spread: kg/m² Spot check (box) results: kg/m² kg/m² kg/m² kg/m² 2 nd Layer Size: PSV: AAV: Flakiness: Condition: * Dry Damp Sample Ref. No.: Tonnage: T Area: m² Ave. rate of spread: kg/m² Spot check (box) results: kg/m² kg/m² kg/m² kg/m² Spot check (box) results: kg/m² kg/m² kg/m² kg/m² Spot check (carpet tile) results: L/m² L/m² L/m² L/m² Spot check (carpet tile) results: L/m² L/m² L/m² L/m² Spot check (carpet tile) results: L/m² L/m² L/m² L/m² Spot check (carpet tile) results: L/m² L/m² L/m² L/m² Spot check (carpet tile) results: L/m² L/m² <td< td=""></td<>
1 st Layer Size: PSV: AAV: Flakiness: Condition: * Dry Damp Sample Ref. No.: Tonnage: T Area: m² Ave. rate of spread: kg/m² Spot check (box) results: kg/m² kg/m² kg/m² kg/m² 2 nd Layer Size: PSV: AAV: Flakiness: Condition: * Dry Damp Sample Ref. No.: Tonnage: T Area: m² Ave. rate of spread: kg/m² Spot check (box) results: kg/m² kg/m² kg/m² kg/m² Spot check (box) results: kg/m² kg/m² kg/m² kg/m² Spot check (box) results: kg/m² kg/m² kg/m² kg/m² Supplier: Type of binder: Sample Ref. No.: Im² Im² 1 st Layer Quantity used: L Area: m² Ave. rate of spread: Im² Spot check (carpet tile) results: I/m² I/m² I/m² Im² Im² Spot check (carpet tile) results: I/m² Im² Im² Im² I
Condition: * Dry Damp Sample Ref. No.: Tonnage: T Area: m2 Ave. rate of spread: kg/m2 Spot check (box) results: kg/m2 kg/m2 kg/m2 kg/m2 kg/m2 2 nd Layer Size: PSV: AAV: Flakiness:
Tonnage: T Area: m² Ave. rate of spread: kg/m² Spot check (box) results: kg/m² kg/m² kg/m² kg/m² Size: PSV: AAV: Flakiness: Condition: * Dry Damp Sample Ref. No.: Tonnage: T Area: m² Ave. rate of spread: kg/m² Spot check (box) results: kg/m² kg/m² kg/m² kg/m² Binder Supplier: Type of binder: Sample Ref. No.: 1 st Supplier: Type of binder: Sample Ref. No.: 1 st 1 st Layer Quantity used: L Area: m² Ave. rate of spread: L/m² Spot check (carpet tile) results: L/m² L/m² L/m² L/m² Spot check (carpet tile) results: L/m² L/m² L/m² L/m² Spot check (carpet tile) results: L/m² L/m² L/m² L/m² Spot check (carpet tile) results: L/m² L/m² L/m² L/m² Sprayer Reg. No.: Sprayer type: Slot Jet/ Swirl Cone/jet test:
Spot check (box) results: kg/m2 kg/m2 kg/m2 kg/m2 kg/m2 kg/m2 2 nd Layer Size: PSV: AAV: Flakiness:
2 ^{md} Layer Size: PSV: AAV: Flakiness: Condition: * Dry Damp Sample Ref. No.: Tonnage: T Area: m² Ave. rate of spread: kg/m² Spot check (box) results: kg/m² kg/m² kg/m² kg/m² Binder Supplier: Type of binder: Sample Ref. No.: 1 Supplier: Type of binder: Sample Ref. No.: 1 1 st Layer Quantity used: L Area: m² Ave. rate of spread: L/m² Spot check (carpet tile) results: L/m² L/m² L/m² L/m² Spot check (carpet tile) results: L/m² L/m² L/m² L/m² Spot check (carpet tile) results: L/m² L/m² L/m² L/m² Spot check (carpet tile) results: L/m² L/m² L/m² L/m² Spot check (carpet tile) results: L/m² L/m² L/m² L/m² Spray bar height: mm Pressure: Slot Jet/ Swirl BS1707 cert.* No Spray bar height: mm Pressure: bar/psi
Condition: * Dry Damp Sample Ref. No.: Tonnage: T Area: m² Ave. rate of spread: kg/m² Spot check (box) results: kg/m² kg/m² kg/m² kg/m² Binder
Tonnage: T Area: m² Ave. rate of spread: kg/m² Spot check (box) results: kg/m² kg/m² kg/m² kg/m² kg/m² Binder Supplier: Type of binder: Sample Ref. No.: Image: Kg/m² L/m² L
Spot check (box) results: kg/m2 kg/m2 kg/m2 kg/m2 kg/m2 Binder Supplier: Type of binder: Sample Ref. No.: Image: Sample Ref. No.: Sprayer type: Slot Jet/ Swirt Sample Ref. No.: Image: Sample Ref. No.: Image: Sample Ref. No.: Image: Sample Ref. No.: Sam
Binder Supplier: Type of binder: Sample Ref. No.: 1 st Layer Quantity used: L Area: m² Ave. rate of spread: L/m² 2 ^{ndt} Layer Quantity used: L Area: m² Ave. rate of spread: L/m² 2 ^{ndt} Layer Quantity used: L Area: m² Ave. rate of spread: L/m² 2 ^{ndt} Layer Quantity used: L Area: m² Ave. rate of spread: L/m² 2 ^{ndt} Layer Quantity used: L Area: m² Ave. rate of spread: L/m² Spot check (carpet tile) results: L/m² L/m² L/m² L/m² L/m² Sprayer Reg. No.: Sprayer type: Slot Jet/ Swirl Cone/jet test: Yes No Spray bar height: mm Pressure: bar/psi Temp.: °C Gritter type: * Tailgate Self- Expanding Combined propelled Before: * Yes No After: * Yes No Roller type: * Suction Brush Before: * Yes
Supplier: Type of binder: Sample Ref. No.: 1 st Layer Quantity used: L Area: m² Ave. rate of spread: L/m² Spot check (carpet tile) results: L/m² L/m² L/m² L/m² L/m² 2 nd Layer Quantity used: L Area: m² Ave. rate of spread: L/m² 2 nd Layer Quantity used: L Area: m² Ave. rate of spread: L/m² 2 nd Layer Quantity used: L Area: m² Ave. rate of spread: L/m² 2 nd Layer Quantity used: L Area: m² Ave. rate of spread: L/m² Spot check (carpet tile) results: L/m² L/m² L/m² L/m² Spot check (carpet tile) results: L/m² L/m² L/m² L/m² Plant Sprayer type: Slot Jet/ Swirl Cone/jet test: Yes No Spray bar height: mm Pressure: bar/psi Temp.: °C Gritter type: * Tailgate Self- Expanding Combined machines
1 st Layer Quantity used: L Area: m² Ave. rate of spread: L/m² Spot check (carpet tile) results: L/m² L/m² L/m² L/m² L/m² 2 nd Layer Quantity used: L Area: m² Ave. rate of spread: L/m² 2 nd Layer Quantity used: L Area: m² Ave. rate of spread: L/m² Spot check (carpet tile) results: L/m² L/m² L/m² L/m² L/m² Plant Sprayer Reg. No.: Sprayer type: Slot Jet/ Swirl Cone/jet test: Yes No Spray bar height: mm Pressure: bar/psi Temp.: °C Gritter type: * Tailgate Self- Expanding Combined Roller type: * Pneumatic Steel (vibrate) Steel (static) Other (specify): Sweeper type: * Suction Brush Before: * Yes No After: * Yes No How soon: h How soon: h Steel (static) Other (specify): Main
Spot check (carpet tile) results: L/m² L/m² L/m² L/m² L/m² 2 nd Layer Quantity used: L Area: m² Ave. rate of spread: L/m² Spot check (carpet tile) results: L/m² L/m² L/m² L/m² L/m² Plant Sprayer Reg. No.: Sprayer type: Slot Jet/ Swirl Cone/jet test: Yes No Spray bar height: mm Pressure: bar/psi Temp.: °C Gritter type: * Tailgate Self- Expanding Combined Roller type: * Pneumatic Steel (vibrate) Steel (static) Other (specify): Sweeper type: * Suction Brush Before: * Yes No
2 nd Layer Quantity used: L Area: m² Ave. rate of spread: L/m² Spot check (carpet tile) results: L/m² L/m² L/m² L/m² L/m² Plant Sprayer Reg. No.: Sprayer type: Slot Jet/ Swirl Cone/jet test: Yes No Spray bar height: mm Pressure: bar/psi Temp.: °C Gritter type: * Tailgate Self- Expanding Combined Roller type: * Pneumatic Steel (vibrate) Steel (static) Other (specify): Sweeper type: * Suction Brush Before: * Yes No How soon: h
Spot check (carpet tile) results: L/m² L/m² L/m² L/m² L/m² Plant Sprayer Reg. No.: Sprayer type: Slot Jet/ Swirl Cone/jet test: BS1707 cert.* Yes No Spray bar height: mm Pressure: bar/psi Temp.: °C Gritter type: * Tailgate Self- propelled Expanding Combined machines Second Combined Roller type: * Pneumatic Steel (vibrate) Steel (static) Other (specify): Combined Sweeper type: * Suction Brush Before: * Yes No After: * Yes No How soon: h Before: * Yes No After: * Yes No
Plant Sprayer Reg. No.: Sprayer type: Slot Jet/ Swirl Cone/jet test: Yes No Spray bar height: mm Pressure: bar/psi Temp.: °C Gritter type: * Tailgate Self- propelled Expanding Combined machines °C Roller type: * Pneumatic Steel (vibrate) Steel (static) Other (specify): Sweeper type: * Suction Brush Before: * Yes No After: * Yes No How soon: h How soon: h How soon: h
Sprayer Reg. No.: Sprayer type: Slot Jet/ Swirl Cone/jet test: Yes No Spray bar height: mm Pressure: bar/psi Temp.: °C Gritter type: * Tailgate Self- propelled Expanding Combined machines °C Roller type: * Pneumatic Steel (vibrate) Steel (static) Other (specify): Sweeper type: * Suction Brush Before: * Yes No After: * Yes No
Spray bar height: mm Pressure: bar/psi Temp.: °C Gritter type: * Tailgate Self- propelled Expanding Combined machines °C Roller type: * Pneumatic Steel (vibrate) Steel (static) Other (specify): Sweeper type: * Suction Brush Before: * Yes No After: * Yes No How soon: h How soon: h How soon: h
Spray bar height: mm Pressure: bar/psi Temp.: °C Gritter type: * Tailgate Self- propelled Expanding Combined machines °C Roller type: * Pneumatic Steel (vibrate) Steel (static) Other (specify): Sweeper type: * Suction Brush Before: * Yes No How soon: How soon: h
Gritter type: * Tailgate Self-propelled Expanding Combined machines Roller type: * Pneumatic Steel (vibrate) Steel (static) Other (specify): Sweeper type: * Suction Brush Before: * Yes No How soon: h
Roller type: * Pneumatic Steel (vibrate) Steel (static) Other (specify): Sweeper type: * Suction Brush Before: * Yes No How soon: h
Sweeper type: * Suction Brush Before: * Yes No How soon: h
How soon: h
Traffic control: * Speed control vehicle Stop/Go boards Traffic lights
Signing Attach sketches for signing during and after
During:
After:
How long were the signs left in place after surface dressing:
Aftercare
Weather after surface dressing: Overnight temp.: °C
Traffic control following surface dressing: Yes No Time maintained: h
Inspections
Date <u>Texture</u> <u>Comments</u>
/// mm /// mm
/ / mm
/ / mm
Signature: Date: / /

14. APPLICATION ON SITE

14.1 General

Practical advice on surface dressing practice and the selection and preparation of roads for surface dressing is given in the RSTA/ADEPT Code of Practice (available on <u>www.rsta-uk.org</u>). The Code of Practice also gives guidance on "after care" for the protection of the newly installed surface dressing during the period of early life vulnerability.

14.2 Plan of work

The principal operations that require to be planned are given in Table 3.2. Careful planning of surface dressing operations is required to achieve the potential productivity and minimise traffic disruption. Guidance on traffic management is given in Chapter 8 of the Traffic Signs Manual (Department for Transport) and the RSTA / ADEPT Code of Practice for Signing at Surface Dressing Sites (RSTA & ADEPT) (Section 14.4) – under revision by RSTA and ADEPT and expected to be re-issued in time for the 2017 season.

14.3 Weather conditions

If the temperature is too low after application, embedment will not take effect and the chippings will be totally reliant on adhesion from the binder. This constraint is also applicable during application, because it is indicative of subsequent conditions and because of the extended time that emulsions will take to break. If the temperature is too high during laying, the binder will not hold the chippings adequately to form a sturdy mosaic, an important aspect in the early life of any surface dressing. Ideally, surface dressing should only be carried out when the pavement temperature is between the values given in Table 14.3 for the particular binder type.

				Maximum Te	mperature ‡					
Binder	Grade	Temperature Movement *	Min. Temp. #	Traffic Cats A to E	Traffic Cats F to G					
	Unmodified	Rising or stable	10 °C	30 °C	35 °C					
Bitumen	Unmodified	Falling	12 °C	35 °C	40 °C					
	late and e dista	Rising or stable	10 °C	35 °C	40 °C					
emulsion	Intermediate	Falling	12 °C	40 °C	42 °C					
	Premium or Super-Premium		As for Intermediate Grade emulsions unless otherv advised by the supplier							

Table 14.3 – Ideal pavement temperature range for surface dressing application

* The different values, which depend on the temperature movement at the start of the process, are to allow for changes during the work.

‡ Adequate provisions for after care must be taken when the maximum temperature is approached.

Chipping temperatures should be similar to pavement temperature before application particularly in cold weather.

14.4 Traffic control

At road works, the free movement of vehicles is likely to be impaired. Although surface dressing operations are of short duration and may not impose the same restrictions as other maintenance processes, measures should be taken to ensure that the effects of surface dressing works are reduced to a minimum. There is a statutory responsibility to warn road users of obstructions on the highway in connection with road works, including surface dressing. All traffic management, during both the work and the aftercare, should be in accordance with the relevant statutory instruments and orders. Chapter 8 of the *Traffic Signs Manual* (Department for Transport) is the standard for all aspects of signing and management of traffic at static and mobile road works on the network and should be used to help all those engaged in road works to meet their statutory obligations. Whilst it is not itself a statutory instrument (except in Northern Ireland), all Highway Authorities and Contractors should comply with the principles outlined in Chapter 8 and establish a safe method of working.

Specific advice on traffic control at surface dressing sites is given in the RSDA / County Surveyors' Society's Code of Practice (*RSTA/ADEPT*) which is now embedded in Chapter 8. The Code of Practice incorporates the relevant guidance from the "Red Book" – Safety at Street Works and Road Works. The RSTA / ADEPT Code of Practice (RSDA & ADEPT) is available on <u>www.rsta-uk.org</u> or on request from the Secretary of ADEPT.

14.5 National Highway Sector Scheme 13

The NHSS 13 document provides a relevant quality assurance framework to BS ISO 9001 (BSI) and sets out the requirements for a qualified workforce. Selecting a contractor accredited to the Sector Scheme is the simplest way for a client to meet his obligations under *The Construction (Design & Management) Regulations 2015* (House of Commons, 2007) to employ a competent contractor. Compliance with the Sector Scheme requirement is assured by independent audit by the Certification Bodies accredited by UKAS. The document is available at www.ukas.com. The list of all registered suppliers is available from www.lantra-awards.co.uk/Schedule-of-Suppliers

15. ACKNOWLEDGEMENTS

This Road Note was produced by a Panel representing all sides of the industry with the Secretariat provided by the Infrastructure Division of TRL Limited. The Chairman would like to acknowledge the help so freely given not only by the members of the Panel but also by their colleagues who provided advice and assistance. The Panel members, with their affiliations, were:

H L Robinson	The Road Surface Treatments Association	Chairman
J F Booth	ADEPT (Environmental Services Group)	
S Betteridge	ADEPT (Lincolnshire CC)	
I M Lancaster	Road Emulsion Association (Nynas UK)	
C D Southwell	Eurobitume UK	
J Bradshaw-Bullock	Mineral Products Association	
R O'Connor	The Road Surface Treatments Association	(Tarstone Surfacing)
D Bateman	TRL Limited	Secretary
T Collett	TAG (Mouchel)	
M F W Heslop	Highways England (Acland)	
J Keayes	Road Emulsion Association	
D Millar	Transport Scotland (TRL Scotland))	

16. **REFERENCES**

British Standards Institution. Sampling and examination of bituminous mixtures for roads and other paved areas: Part 112, Method for the use of road surface hardness probe. BS 598-112. British Standards Institution, London. <u>http://shop.bsigroup.com/Navigate-by/Standards/</u>

British Standards Institution). UK national guidance for the use of BS EN 13043 "Aggregates for bituminous mixtures and surface treatments for roads, airfields and other trafficked areas". PD 6682-2: British Standards Institution, London. http://shop.bsigroup.com/Navigate-by/Standards/

British Standards Institution. *Bitumen road emulsions* – Code of practice of the use of cationic bituminous emulsions on roads and other paved areas. BS 434-2. British Standards Institution, London. <u>http://shop.bsigroup.com/Navigate-by/Standards/</u>

British Standards Institution. – *Surface treatments. Guidance on the use of BS EN 12271* and BS EN 12273 - PD 6689. British Standards Institution, London. http://shop.bsigroup.com/Navigate-by/Standards/

Road Note 39 (Seventh Edition)

British Standards Institution. Road and airfield surface characteristics – Test methods: Part 1, Measurement of pavement surface macro-texture depth using a volumetric patch technique. BS EN 13036-1. British Standards Institution, London. http://shop.bsigroup.com/Navigate-by/Standards/

British Standards Institution. Aggregates for bituminous mixtures and surface treatments for roads, airfields and other trafficked areas. BS EN 13043. British Standards Institution, London. http://shop.bsigroup.com/Navigate-by/Standards/

British Standards Institution. Surface dressing – Test methods – Part 1: Rate of spread and accuracy of spread of binders and chippings. BS EN 12272-1. British Standards Institution, London. http://shop.bsigroup.com/Navigate-by/Standards/.

British Standards Institution. Surface dressing – Test methods – Part 2: Visual assessment: of defects. BS EN 12272-2. British Standards Institution, London. http://shop.bsigroup.com/Navigate-by/Standards/

British Standards Institution. Bitumen and bituminous binders. Determination of cohesion of bituminous binders with pendulum test. BS EN 13588, BS 2000-522 British Standards Institution, London. http://shop.bsigroup.com/Navigate-by/Standards/

British Standards Institution. *Surface dressing – Requirements.* BS EN 12271. British Standards Institution, London. <u>http://shop.bsigroup.com/Navigate-by/Standards/</u>

Department for Transport. *Traffic signs manual; Chapter 8 – Traffic safety measures and signs for road works and temporary situations; Part 1 – Design.* The Stationery Office, London. <u>https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/203669/traffic-signs-manual-chapter-08-part-01.pdf</u>

Department for Transport. *Traffic signs manual; Chapter 8 – Traffic safety measures and signs for road works and temporary situations; Part 2 – Operations.* The Stationery Office, London. <u>https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/203670/traffic-signs-manual-chapter-08-part-02.pdf</u>

Highways England, Scottish Executive, Welsh Assembly Government and The Department for Regional Development Northern Ireland. *Manual of Contract Documents for Highway Works*, http://www.standardsforhighways.co.uk/mchw/index.htm.

(MCHW 1) Volume 1: Specification for Highway Works.

http://www.standardsforhighways.co.uk/mchw/vol1/index.htm

(MCHW 2) Volume 2: Notes for Guidance on the Specification for Highway Works. http://www.standardsforhighways.co.uk/mchw/vol2/index.htm

Highways England, Scottish Executive, Welsh Assembly Government and The Department for Regional Development Northern Ireland. Design Manual for Roads and Bridges.

(DMRB 7.2.1) HD 24/06 Traffic assessment, http://www.standardsforhighways.co.uk/dmrb/vol7/section2/hd2406.pdf.
(DMRB 7.3.1) HD 28/15 Skidding resistance, http://www.standardsforhighways.co.uk/dmrb/vol7/section3/hd2804.pdf.
(DMRB 7.5.1) HD 36/06 Surfacing material for new and maintenance construction, http://www.standardsforhighways.co.uk/dmrb/vol7/section5/hd3606.pdf.
(DMRB 7.5.2) HD 37/99 Bituminous surfacing materials and techniques, http://www.standardsforhighways.co.uk/dmrb/vol7/section5/hd3799.pdf.

House of Commons (1974). Health and Safety at Work, etc., Act 1974. The Stationery Office, London.

House of Commons (2002). Control of Substances Hazardous to Health (COSHH) Regulations 2002. The Stationery Office, London.

House of Commons (1991). New Roads and Street Works Act 1991. The Stationery Office, London. http://www.opsi.gov.uk/ACTS/acts1991/Ukpga_19910022_en_1.htm.

House of Commons (1999). *Management of Health & Safety at Work Regulations 1999*. The Stationery Office, London. <u>http://www.opsi.gov.uk/Sl/si1999/19993242.htm</u>.

House of Commons (2007). The Construction (Design & Management) Regulations 2015. The Stationery Office, London. <u>http://www.hse.gov.uk/construction/cdm.htm</u>

British Standards Institution. *Quality management systems. Requirements.* BS EN ISO 9001. British Standards Institution, London. http://shop.bsigroup.com/Navigate-by/Standards/.

Interim Advice Note 156/12.

http://www.standardsforhighways.co.uk/ha/standards/ians/pdfs/ian156.pdf

RSTA / ADEPT. Code of Practice for Surface Dressing. www.rsta-uk.org/publications.htm

RSTA / ADEPT. Code of practice for signing at surface dressing sites. <u>www.rsta-uk.org/publications.htm</u> **currently being updated**

Warwickshire CC. County Surfacing & Structural Maintenance Policy https://www.warwickshire.gov.uk/highwayservicestandards

Well Maintained Highways. Code of Practice for Highway Maintenance Management, TSO

APPENDIX A: WORKED EXAMPLES OF DESIGN METHOD

A.1 Example 1, Single Surface Dressing

Kill Lane Housing Estate, Ballyshan, Northern Ireland. 5,000 m² (Location – Central)

Site is located at an altitude of less than 200m above sea level.

It is five roads in a housing estate. There are a few minor junctions and cross-overs.

No traffic count has been received from the Client.

The site has an average speed of less than 30 mph.

The site has houses with entrances to driveways.

There are a series of shallow curves of over 250m radius.

A gradient of less than 5% and there are some areas of partial shade from overhanging trees.

Hardness probe tests show an average depth reading of 5mm at 28°C.

The job is programmed for June.

As no traffic count is available, reference should be made to *Well Maintained Highways* - Code of *Practice for Highway Maintenance Management Section 8, Table 1 Carriageway Hierarchy, which indicates a traffic category of H. (NRSWA Road Type 4)*

The design suggests a crushed rock aggregate with PSV of 50, although the local Skidding Policy specifies 55 PSV minimum. (See Table: 7.3.1 - Recommended PSV levels for less heavily trafficked local roads)

The flakiness index of the proposed aggregate is 15%.

The existing surface is an asphalt concrete (macadam) surface laid about 15 years ago.

Surface condition is normal.

Please note:

- a) This site is fictitious: any resemblance to any existing site is purely coincidental.
- b) <u>The design is for illustration purposes only and no responsibility can be accepted for</u> the accuracy of the data.

Road number	:					<u>R</u>	egio	n/Are	ea:			Nort	hern	Irel	and.		
Section location	<u>on</u> : K	ill Lane	Housin	g Esta	te, Bal	lysha	n, No	orthe	ern Ir	elano	.						
Length:		m	Wie	dth:		m	N	<u>. of</u>	lane	<u>s</u> :	2	Are	<u>ea</u> :		5,00	0 m	2
Lane(s) 2		<u>Mediu</u>	um/Hea	vy Traff	ic:	0 - 20	cv/	l/d		N	RSW	A ro	ad ty	<u>pe</u> :		4	4
Traffic Speed:	*		30 m	ph													
Traffic catego	<u>ry</u> : *	A		₿	£		£)	-	E		F		G			Н
Location: *	South	Ce	ntral	North	ł	Te	mper	ature	Cate	egory	:*	A	E	3	£		Ð
Road hardnes	s prob	e depth:	5	mm	at	28	°C	Mi	n. PS	V:	55		Max	. AA	<u>.V</u> :		10
<u>Road</u> <u>Hardness</u> <u>Category</u> : *	Ver	y Hard		Hard	ţ	Norm	al		Soft		Ver	y S o	ft		Var	iable	÷
Surface condi	<u>tion</u> : *		Ver	y binde rich	F B	inder	rich		Norr	nal			ure ir track			Binde N/Po	ər rous
Radius of cur	vature:	*	Unc	ler 100	m 1	00 -	250 r	n (over	250 n	n	<u>Exp</u>	ecte	d Mo	onth	on S	<u>iite</u> :
Junction or cro	ossing	*	Ар	proach	N	on-ap	proa	ch						Ju	ine		
Overall gradie	<u>nt</u> : *		up	to 5 %	5	- 10	%	θv	er 10	%	[Uph	ill		Dow	/nhill
Type of surface dressing: * Single Racked-In Double Inverted Double Sandwich																	
Chipping size:		8/1 - 8/14 & 2	1 mm .8/6.3 n		6.3 .3/10 8	8/10 m 8 2 8/		um.			3 mm 4/2 n				Othe	r:	
Aggregate typ	L			ushed r			ast-fu				steel e				Gr	avel	
Flakiness inde			Les	s than 1	0%	10	% to	15 %	6		% to	•	/	Mo	re th	an 2	:0 %
<u>Bituminous en</u>	nulsior	binder:	Ų	nmodifi	ed	Intermediate			e Premium (Grade Super-Prem			hium		
Seasonal risk	catego	ory:		Hi	gh	Sigr			Signifi	nificant				Low			
Binder spread	rate:		First	layer	1	l.5 L/r	n²		Se	econc	l laye	r *					
Location	Season	Aggregate type	Flakiness	<u>Increase of</u> chipping size	Shade	<u>Surface</u>	condition	Gradient	Traffic Speed	l Introffichod			<u>n of</u> tors	<u>R</u>		of spi binde	read er
																	L/m²
																	L/m²
	0	0	0	0	+ 0.1	()	0	0		0	+ (0.1	1		1.6	L/m²
																	L/m²
				7		1							F	1			
<u>Designer</u> :					<u>Ini</u>	itials:						<u>Da</u>	te:				1
* Highlight or de	lete as	appropria	ite.	Shade	ed box i	indicat	tes da	ita tha	at a C	lient s	hould	prov	vide w	/hen	seek	ing te	enders

Road Note 39 (Seventh Edition)

A.2 Example 2, Racked-in surface dressing

Kirk Lane, Auldtown, Scotland – 2.5km (Location – North)

Site is located at an altitude of 50m above sea level: it is two lane single carriageway with average width 6.1m. It runs from west to east.

Traffic count received from Client is 72 cvld.

The site has a speed limit of 50 mph.

The site has four minor junctions with unclassified roads and some entrances to farms.

There are a series of shallow curves of over 250m radius.

A gradient of less than 5%.

There is one section 500m long with full shade from overhanging trees.

Hardness probe tests show an average depth reading of 5mm at 28 °C.

The job is programmed for June.

The design requires a crushed rock aggregate with PSV of 55. (See Table: 7.3.1 - Recommended PSV levels for less heavily trafficked local roads)

The flakiness index of the proposed aggregate is 15% (*Fl*₁₀).

The existing surface is an asphalt concrete (close textured macadam) surface laid about 15 years ago.

Surface condition is hard and homogeneous with texture in the wheel tracks under the trees.

Please note:

- a) <u>This site is fictitious: any resemblance to any existing site is purely</u> <u>coincidental.</u>
- b) <u>The design is for illustration purposes only and no responsibility can be</u> <u>accepted for the accuracy of the data.</u>

Road number:						Ree	gion	/Are	<u>a</u> :		Ν	lorth	ern S	Scot	and		
Section location:	Kir	k Lane,	Auld	town, S	cotlan	d											
Length:	-	2,500 m	Wie	dth:	6.1	10 m	No	. of	lanes	<u>:</u> :	2	<u>Are</u>	ea:	1	5,25	60 m ²	
Lane(s) 2		<u>Mediu</u>	m/Hea	vy Traff	ic:	72	cv/l/	ď		N	RSW	A ro	ad typ	<u>be</u> :		4	
Traffic Speed: *	<mark>50</mark> mj	ph															
Traffic category: *	·	A		₿	£		Ð		Æ	Ē		F		G		Ħ	
Location: * Se	uth	Cer	ntral	North	۱	Tem	oera	ture	Cate	gory:	*	A	B		С	Ð	
Road hardness p	robe	depth:		<mark>5</mark> mn	n at	28 '	°C	M	in. PS	<u>SV:</u>	55		Max	x. AA	<u>.v</u> :	8	
Road Hardness Category: *	/ery	Hard	I	Hard	4	Normal			Soft		Ver	y S o	ft		Vari	able	
Surface condition	• * •			y binde rich	F Bii	nder Ri	ch		Norm	nal			ure in track			inder /porou:	s
Radius of curvatu	<u>ıre</u> : '	t	Und	ler 100	m 1	00 – 25	i0 m	• (over 2	250 m	<u>ן</u>	<u>Exp</u>	ected			on Site:	
Junction or crossi	ing:	*	Ар	proach	N	ən-appi	oac	h						Ju	ne		
Overall gradient:	*		up	to 5 %	5	- 10 %	,	Ove	er 10	%	[Uphi	H	ł	Downhi	Ш
Type of surface dressing: * Single Racked-In Double Inverted Double Sandwich																	
Chipping size: *		8/1 4	mm		6.3	/10 mn	f		2	8/6.3	3 mm	+		C)the	÷	
	8	/14 & 2 .	8/6.3 n	nm 6	5.3/10 8	2.8/6.	3 mi	m	6.3/	10 &	4/ 2 n	nm					
Aggregate type: *			Cru	ushed r	ock	Blas	t-fur	nace	÷	S	teel e	slag			Gra	vel	
Flakiness index: *	•		Les	s than 1	1 0 %	10 %	5 to	15 %	0	15 (% to	20 %	/ 0	Mor	e tha	an 20 %	6
Bituminous emuls	sion	binder:	U	nmodifi	ed	Intermediate P			Pren	mium Grade			Super-Premium				
Seasonal risk cate	egor	у:		Hi	gh	Significan			cant				Low				
Basic binder spread rate from Tables:	<u>d</u>		First	layer		2.0	L/r	n²		Seco	nd la	yer *	*			L/n	n²
Location	Season	<u>Aggregate type</u>	<u>Flakiness</u>	Increase of chipping <u>size</u>	Shade	Surface condition		<u>Gradient</u>	Traffic Speed		Untrafficked area		im of ctors	<u>R</u> a		of sprea binder	<u>ad</u>
Fully shaded 500 m section					+ 0.2	+0.1		0	+0.1	1	0	+	0.4		2.4	L/m²	
Remainder of site, normal surface condition					0	0		0	+0.1	1	0	+	0.1		2. 1	L/m²	_
<u>Designer</u> :					<u>Ini</u>	<u>tials</u> :						<u>Da</u>	<u>te</u> :		/	/	

Road Note 39 (Seventh Edition)

* Highlight or delete as appropriate.

This G category site has a speed limit of 50 mph and has more than 1 junction per km. From 8.3a the choice is a racked-in surface dressing or a double surface dressing. The road runs west to east so the fully shaded section that has texture in the wheel tracks is cold and often damp. The frequency of minor junctions indicates that a 55 PSV chipping is recommended (Table 7.3.1).

A double surface dressing under the trees would be preferable in terms of durability, if funds permit. If the humidity is high and there are poor drying conditions a double surface dressing under the trees section is preferable for early stability.

Type of surfac	e dre	ssing: *	Single	Rac	ked-In	Double	In	verted	l-Double	Sand	wich		
Chipping size:	*		1 mm			/10 mm			. 8/6.3 mn		Other:		
	L	8/14 & 2	.8/6.3 n	hm	6.3/10 8	. 2.8/6.3 n	nm	6.3/	1 0 & 4/2 I	nm			
Aggregate typ	<u>e</u> : *		Cr	ushed	rock	Blast-fu	irnac	æ	Steel	slag	Gravel		
Flakiness inde	<u>ex</u> : *		Les	s than	10 %	10 % to	15 %	%	15 % to	20 %	More than 20 %		
<u>Bituminous en</u>	nulsio	n binder:	Ų	nmodil	fied	Intermo	ediate	e	Premium	Grade	Super-Premium		
Seasonal risk	categ	ory:		H	igh		ę	Signific	cant		Low		
<u>Basic binder</u> spread rate fr <u>Tables</u> :	<u>om</u>		First	layer		1.1 L	/m²		Second la	ayer *	1.3L/m ²		
Location Fully shaded 500m	Season	Aggregate type	Flakiness	Increase of chipping size	Shade	Applied to First Layer	Gradient	Traffic Speed	Untrafficked area	Sum facto	rs <u>layer</u>		
section	0	0	0	0	+ 0.2	only – so +0.1 gives 1.2L/m ²	0	+0.1	1 0	+ 0.3	3 1.6 L/m ²		
Designer:]	Init	<u>ials</u> :				Date	: / /		

* Highlight or delete as appropriate.

Shaded box indicates data that a Client should provide when seeking tenders

Under the trees, fully shaded section, the design is: D10 1^{st} layer 1.2L/m² with 2nd layer at 1.6L/m² using intermediate grade binder; and for the remainder R10 at 2.1L/m².

A.3 Example 3, Double Surface Dressing

Heol Capel, Hendref, Wales. 2.5km. (Location - Central)

The site is located at an altitude of more than 200m above sea level.

It is a single carriageway feeder road 7.35 m wide within the town carrying 575 cv/l/d and is a bus route.

The speed limit is 40 mph, reducing to 30 mph.

There are some side roads entering the site at various locations, two are major junctions.

There is no on-street parking.

The average hardness probe test results show a 7mm depth at 29 °C.

There are several areas of partial shade from buildings.

An approach to a pedestrian crossing will be treated with High Friction Surfacing and will not be included for a surface dressing.

The site is programmed for late May/early June.

The design requires a crushed rock aggregate with PSV of 65. (For traffic levels over 250 cv/l/d refer to IAN 156 Table 3.1a for guidance on selecting the minimum PSV)

The flakiness index of the proposed aggregate is less than 10% (FI_{10}).

The existing surface is a 12 year old surface dressing that has become polished and showing signs of minor deterioration.

The surface condition is described as normal (not fatted up or tracked or porous or high macro-texture and fairly homogeneous).

Please note:

- a) This site is fictitious: any resemblance to any existing site is purely coincidental.
- b) <u>The design is for illustration purposes only and no responsibility can be accepted for</u> <u>the accuracy of the data.</u>

Road numbe	er:					Region/A	ea:		South West Wales					
Section locat	tion:	Hoel Ca	oel, He	endref, W	/ales									
Length:	2	2,500 m	V	Vidth:	7.35 m	<u>No. c</u>	of lanes	: 1	2 <u>Are</u>	<u>ea</u> :	1	8,375 m ²		
Lane(s)	2	Med	ium/H	eavy Traf	fic: 5	75 cv/l/d		<u>NRS</u>	WA road	d type	<u>:</u>	2		
Traffic Speed	<u>d</u> : *		40	mph										
Traffic categ	lory: *	A		₿	£	D	Æ		₽	-	÷	Ħ		
Location: *	Sou	uth Cer	ntral	North		<u>Femperatu</u>	re Cate	gory: *	A	B	С	Ð		
Road hardne	ess pro	obe depth	<u>:</u>	7 mm	at	29 °C <u>N</u>	lin. PS\	<u>/:</u> 6	65	Max.	AAV:	8		
<u>Road</u> <u>Hardness</u> <u>Category</u> : *	¥	^{/ery Hard}		Hard	No	rmal	Soft	f	/ery Soft	ŧ		Variable		
Surface cond	<u>dition</u> :	*	Ą	/ery binde/ rich	ər Bind	ler rich	Norm	nal	Texture in wheel tracks			Binder lean/porous		
Radius of cu	rvatur	<u>'e</u> : *	Ur	nder 100	m <u>100</u> -	- 250 m	over 2	250 m	Exp	pected	Month on Site:			
Junction or c	crossir	<u>ng</u> : *		Approacl	n Non	-approach					May	y / June		
Overall gradi	<u>ient</u> : *			up to 5 %	6 5 -	10 % 0	ver 10 '	%	Uphill			Downhill		
Type of surface dressing: * Single Racked-In Double Inverted Double Sandwich							wich							
Chipping size	:*		8/14 n	hm	ŧ	5.3/10 mm		2.	.8/6.3 m i	m		Other:		
Chipping size	. *			nm 6.3 mm		6.3/10 mm 0 & 2.8/6.3	mm		.8/6.3 m i 10 & 4/2			Other:		
Chipping size				6.3 mm				6.3/	10 & 4/2			Other: Gravel		
	<u>oe</u> : *			6.3 mm	6.3/10 ed rock) & 2.8/6.3 Blast-fur		6.3/′ lag	10 & 4/2	mm I slag	%			
Aggregate typ	<u>oe</u> : * <u>ex</u> : *	8/14		6.3 mm Crush Less than	6.3/10 ed rock	0 & 2.8/6.3 Blast-fur 10 %	nace s	6.3/*	10 & 4/2 Stee	mm I slag to 20 S		Gravel		
Aggregate typ Flakiness inde	<u>be</u> : * <u>ex</u> : * mulsic	8/14		6.3 mm Crush Less than	6.3/10 ed rock	0 & 2.8/6.3 Blast-fur 10 %	to 15 %	6.3/*	10 & 4/2 Stee 15 % t Premiur	mm I slag to 20 S		Gravel More than 20 %		
Aggregate typ Flakiness inde Bituminous er	<u>oe</u> : * <u>ex</u> : * mulsic	8/14 on binder: gory:		6.3 mm Crush Less than	6.3/10 ed rock 10% odified High	0 & 2.8/6.3 Blast-fur 10 %	to 15 %	6.3/-	10 & 4/2 Stee 15 % t Premiur	mm I slag to 20 S m Gra		Gravel More than 20 % Super-Premium		
Aggregate typ Flakiness inde Bituminous er Seasonal risk	<u>oe</u> : * <u>ex</u> : * mulsic	8/14 on binder: gory:		6.3 mm Crush Less than Unmo	6.3/10 ed rock 10% odified High	0 & 2.8/6.3 Blast-fur 10 % Intern	to 15 %	6.3/-	10 & 4/2 Stee 15 % t Premiur ant cond lay	mm I slag to 20 S m Gra		Gravel More than 20 % Super-Premium Low 1.2 L/m ²		
Aggregate typ Flakiness inde Bituminous er Seasonal risk Binder spread	<u>be</u> : * <u>ex</u> : * mulsic c catec d rate:	8/14 on binder: gory:	<u>& 2.8/</u> [[6.3 mm Crush Less than Unmo First lay	6.3/10 ed rock 10% bdified High /er	0 & 2.8/6.3 Blast-fur 10 % Intern 1.0 L/m ²	Cuadient	6.3/- lag Signific See	Ant Cond lay	mm H slag to 20 ° m Gra ver *	Sum o factors	Gravel More than 20 % Super-Premium Low 1.2 L/m² Rate of spread of binder 2 nd Layer Layer		
Aggregate typ Flakiness inde Bituminous er Seasonal risk Binder spread	<u>De</u> : * <u>ex</u> : * <u>mulsic</u> <u>cate</u> <u>d rate</u> : <u>Cose</u> <u>So</u>	en binder: Addree Addree Bory:	<u> </u>	6.3 mm Crush Less than Unmo First lay	6.3/10 ed rock 10% edified High /er	2.8/6.3 Blast-fur 10 % Intern 1.0 L/m ²	nace s to 15 % nediate	6.3/- lag Signific Se	10 & 4/2 Stee 15 % t Premiur ant cond lay	mm H slag to 20 ° m Gra ver *	ide	Gravel More than 20 % Super-Premium Low 1.2 L/m ² Rate of spread of binder 2 nd		

Designer:	Initials:	<u>Date</u>	/ /
		:	

* Highlight or delete as appropriate. Shaded box indicates data that a Client should provide when seeking tenders

The design recommended is D10 1^{st} layer of premium grade binder 1.0L/m² and 2^{nd} layer at 1.4L/m².

If this work was delayed until late August or beginning of September the 2^{nd} layer would need to be at $1.6L/m^2$.

.

Appendix B: Possible Highway Authority Example of a Check Table for Target Rates of Spread, Product Types and PSV for Traffic Site Categories H, G and F for unshaded and normal substrates with texture in the wheel tracks. (Further Tables for various surface conditions and softer roads would need to be developed. This Authority uses S10 on rural H roads which is not considered in Table 9.2.1).

Site Description	Traffic (Commercial Vehicles per Lane per Day) and approximate (RN39 letter categories)								
	0-20 (H)	21-100 (G)	101-250 (F)						
	50 PSV S6 1.6L/m ²	55 PSV S6 1.5L/m ² , S10*	55 PSV R10 1.8L/m ² , S10*						
Single carriageway easy site	S10* rural only	or	or						
		R10 1.9L/m ²	D10 1.2L/m ² 2 nd 1.3L/m ²						
Single carriageway greater stress		55 PSV R10 2.0L/m ²	60 PSV R10 1.9L/m ²						
If rural road, some turning or sharp bends, junctions > 1 per km and/or hills If urban, on-street parking.	55 PSV S6 1.6L/m ²	or D10 1.2L/m ²	or D10_1.2L/m ²						
n aban, on oneor parking.		2 nd 1.4L/m ²	2 nd 1.3L/m ²						
Dual carriageways lane 1		55 PSV R10 2.0L/m ²	60 PSV D10 1.2L/m ²						
(consider lane 2 separately increase RoS by at least 0.2L/m ² or consider	55 PSV R10 2.0L/m ²	or	2 nd 1.3L/m ²						
S6)		D10 1.2L/m ² 2 nd 1.4L/m ²							
Gradients > 5%, uphill	55 PSV R10	60 PSV D10 1.1L/m ²	60 PSV D10 1.0L/m ²						
	1.9L/m ²	2 nd 1.2L/m ²	2 nd 1.2L/m ²						
Gradients > 5%, downhill		60 PSV D10 1.2L/m ²	60 PSV D10 1.2L/m ²						
····· ··· ··· ··· ··· ···	55 PSV R10 2.1L/m ²	2 nd 1.4L/m ²	2 nd 1.3L/m ²						

*Note S10 needs a special design with a high rate of spread for lightly trafficked roads. R10 is generally preferred.

Key to Table

Very easy sites, binders with an unmodified or Intermediate Grade Binder with single surface dressing (S)
Higher speed and/or moderately difficult sites, Intermediate Grade Binder with single surface dressing (S) or racked-in (R)
Difficult sites with higher IL, Intermediate or Premium Grade Binder with racked-in (R) or double surface dressing (D) for enhanced durability
Difficult stressed sites, Premium or Super Premium Grade Binder with double (D). Traffic speeds upon opening greater than 40 mph.

Rates of spread should be reduced by $0.2L/m^2$ for binder rich soft substrates and increased by $0.2L/m^2$ for fully shaded substrates and by $0.2L/m^2$ for existing high macro-texture. For double surface dressings these changes are applied to the 2^{nd} layer of binder.

If a particular design is significantly different from the Table then it should be checked.

Road Note 39 (Seventh Edition)

APPENDIX C: INDEX

Page

Acknowledgements	15	
Adjustment for rate of spread of binder	42	
Aftercare	7, 9, 44	
Aggregate selection		
for primary layer	11	
for secondary layer	11	
Altitude	19	
Application	3, 45, 51	
Artificial aggregate	11	
Basic approach, design methodology	16	
Binder-spread	39	
Binder types		
Polymer modified binder	14	
Unmodified binder	14	
BS EN 13808	13	,
Chipping	10	
Artificial	11	
	11	
Crushed gravel	11	
Selection for primary layer		
Selection for secondary layer	11	
Very hard surfacings	11	1
Code of Practice	_	
RSTA / ADEPT	7	
RSTA / ADEPT for signing at	_	
surface dressing sites	7	
Construction records	49	
Correction of existing site defects	42	
Cycleways	44	
Design methodology		
Basic approach	16	
Design for texture depth	18	
Design for quieter surfacings	18	
Design records	49	
Double surface dressing		
Type of surface dressing	5	
Size of chippings	12	
Rate of spread of binder	40	
Rate of spread of chippings	38	
Existing surface characteristics,		
suitability	33	
Footways	44	
General principles	6	
Gradient	32	
Guidance document for surface	02	
dressing PD 6689	9	
Hard shoulders of motorways	13, 32	
Hardness, road	21	
	4	
Health and Safety	•	
Highway layout	27	
Input parameters, subdivision of	18	
Inverted double surface dressing	40	
Type of surface dressing	12	
Size of chippings	12	

	Page
Rate of spread of binder Rate of spread of chippings Ironwork, Masking Latitude Local traffic	42 39 45 19 32
Manual of Contract Documents for Highway Works Modified binder Motorway, outside lanes National guidance document for	6 14 13
surface dressing PD 6689 National Highway Sector Scheme 13 Open-textured asphalt surfaces,	9 4, 52
adjustment for use Operations, surface dressing Pavement	13 6
Type Performance specification Plan of work Purposes Quiet Racked-in surface dressing	6 48 51 3 18
Type of surface dressing Size of chippings Rate of spread of binder Rate of spread of chippings Rate of spread of polymer modified	5 12 40 38
bituminous binder Rate of spread of unmodified	14, 39
bituminous binder Rate of spread of binder, adjustment Rationalisation of surface dressing	39 42
types Reasons for surface dressing Recipe specification	35 3
with design by Client with design by Contractor Records Design Construction Recycled road pavement	48 48 49 49 49
References Retread Revision Panel Road hardness	53 44 4, 53 21 7
RSTA / ADEPT Code of Practice RSTA / ADEPT Code of Practice for Signing at Surface Dressing Sites	7
Sandwich surface dressing Type of surface dressing Size of chippings Rate of spread of binder Rate of spread of chippings	5 12 41 39

Road Note 39 (Seventh Edition)

March 2016

Scope Sealing Seasons Sections	3 46 29
Within a site	34
Type of surface dressing	35
Sector Scheme 13	4, 52
Shade	32
Shape of chipping	10
Signing at surface dressing sites,	
RSTA / ADEPT Code of Practice	7
Single surface dressing	
Type of surface dressing	5
Size of chippings	12
Rate of spread of binder	39
Rate of spread of chippings	38
Site	
Sections	34
Rationalisation of surface dressing	
types	35
Defects, correction of existing	42
Size of chippings	12
Skid-resistance	
Reason for surface dressing	27
Requirements	27
Specification	
Recipe with design by Client	48
Performance with design by	
Contractor	48
Suitability of existing surface	
characteristics	33
Surface condition	27, 31
Surface dressing	
Operations	6
Timetable	6
Texture	13, 18
Timetable for surface dressing	6
Traffic categories	25
Traffic control	52
Traffic, local	32
Traffic speed	26
Type of surface dressing for a section	35

APPENDIX D: PROFORMA FOR RECORDING DESIGNS

Design of road surface dressings to Road Note 39 (Seventh Edition)																	
Road number:					Region/Area:												
Section location:																	
Length:		r	n <u>V</u>	/idth:		m <u>I</u>	No. c	of lan	<u>es</u> :		Are	<u>a</u> :		m ²			
Lane(s)		Mec	lium/H	eavy Traffi	avy Traffic: cv/l/d N							RSWA road type:					
Traffic Speed: *			r	nph	h												
Traffic category	• * •	В	С)		E		F		G	Н					
Location: *	South	n Ce	entral	North		Temper	e Category: * A				В	С	D				
Road Hardness (RH) probe depth:				mm	at	°C	<u>Min. PSV:</u>					<u>Ma</u>	<u>ax. AAV</u> :				
RH Category:*	Ve	y Harc		Hard	N	lormal	Soft				Very Soft Variable						
Surface condition	ery binder rich	Biı		Normal			Textu heel 1	ire in tracks									
Radius of curva	ature: *		L	Jnder 100 r	n 1	00 – 250	m	over	250 m]	Expected Month on Site:						
Junction or cros	sing: *		ŀ	Approach	No	n-approa	ch										
Overall gradient	<u>t</u> : *			up to 5 %							Uphill Downhill						
Type of surface dressing: * Single Racked-In Double Inverted Double Sandwich																	
<u>Chipping size</u> : * 8/14 mm 6.3/10 mm 2.8/6.3 mm Other:										er:							
8/14 & 2.8/6.3 mm 6.3/10 & 2.8/6.3 mm 6.3/10 & 4/2 mm																	
Aggregate type:	*	Crushed ro	rushed rock Blast-furna					ce Steel slag				Gravel					
Flakiness index: *				ess than 10)%	10 % to	15 %	15 % 15 % to				0 20 % More than 20 %					
Bituminous emu	ulsion k	<u>inder:</u>		Unmodifie	d	Interme	ediate	diate Premium				n Grade Super-Premium					
Seasonal risk category:				Higl	h		Significant				Low						
Binder spread rate: First				st layer		L/m²	Second laye				r * L/m²			11 ²			
Location	Season Aggregate type		<u>Flakiness</u>	<u>Increase of</u> chipping size	<u>Shade</u>	<u>Surface</u> condition	<u>Gradient</u>	Traffic Speed	Untrafficked	area	<u>Sun</u>			of spread			
	ပ	ပ	ပ၊	Ag	Ε	<u>chip</u>	100	S 2	G	Traf	Unt						
First Layer														L/m²			
														L/m²			
														L/m²			
														L/m²			
Designer:		Init	ials:]	Dat	e:		/ /						
* Highlight or delete as appropriate. Shaded box indicates data that a Client should provide when seeking tenders																	

Design of road surface drossings to Boad Note 20 (Seventh Edition)

Highlight or delete as appropriate.

Road Note 39 (Seventh Edition)

Road Number	Ī	<u></u>				Loca								
Date of Constr	ruction:	/	/	Tir	ne Sta	art:				Tim	e Finish:			
Weather: *	Sunny	Clou	udy S	Showers	Dri	zzle	A	ir Te	mp:	°C	7	Humidit	y:	%
Road Conditio	<u>on</u> : *	Dr	y	Dam	р					Roa	d Temp.:			°C
Chippings	•				•									
Supplier:					<u>Quar</u>	ry:					Depot:			
1 st Layer	Size:			<u>PSV</u> :			AA	<u>\V</u> :			<u>Flakin</u>	ess:		
C	Condition	<u>n:</u> *	Dry	Damp			L			ef. No.:				
1	Tonnage	:	Т	A	rea:		m²	-	Ave	. rate o	f spread:			kg/m²
<u>S</u>	Spot che	ck (box)	results	:	kg/m ²	2	kg/i	m²		kg/m²		kg/m	2	kg/m²
<u>2nd Layer</u>	Size:			PSV:			AA	AV:			Flakin	ess:		
<u>C</u>	Condition	<u>n:</u> *	Dry	Damp			Sam			ple Ref. No.:				
-	Tonnage	<u>e:</u>	Т	<u>A</u>	rea:		m²	<u>Ave. rate o</u>		of spread:			kg/m²	
<u>S</u>	Spot che	ck (box)	results	:	kg/m ²	2	kg/i	m²		kg/m²	:	kg/m	2	kg/m²
Binder														
Supplier:				Type of binde					Sam		nple Ref. No.:			
<u>1st Layer</u>	<u>Quantit</u>	<u>y used</u> :		L /	Area:		m²		Ave	. rate o	f spread:			L/m²
Spot ch	<u>neck (car</u>	pet tile)	results	:	L/	m²	L/r	n²	L/	m²	L/m	ן ²		L/m²
<u>2nd Layer</u>	<u>Quantit</u>	<u>y used</u> :	L /	Area:		m²		Ave. rate of		f spread:			L/m²	
Spot ch	<u>neck (car</u>	pet tile)	results	:	L/	m²	L/r	n²	L/	m²	L/m	ן ²		L/m²
Plant														
Sprayer Reg.	<u>No.</u> :				<u>Spray</u>	/er ty	oe:				<u>Cone</u>	test: *	Yes	No
Spray bar height:				mm <u>Pre</u>			re:		bar/psi		Temp.:			°C
Gritter type: * Tailgate Self-propell							pelled		Exp	panding	1			
Roller type: *		Pneum	atic	Steel (v	vibrate)	Steel (statio	C)		Other (sp	ecify):		
Sweeper type:	n	Brush	Before:	ore: * Yes No			After: *		Yes	No				
	_										How	soon:		h
Traffic control:	*	Spee	ed cont	rol vehicl	е		Stop	/Go	board	ds		Traff	ic lights	
Signing	_							Att	tach s	sketche	s for sign	ing duri	ng and	after
During:	_													
<u>After:</u>										1				
How long were	e the sig	ns left ir	place	after sur	face di	ressir	<u>ng:</u>							
Aftercare														
Weather after surface dressing: Overnight temp.:								٥C						
Traffic control following surface dressing: Yes No Time maintained: h														
Inspections														
Date	<u></u>	<u>Texture</u> <u>Comments</u>												
/ /			nm											
/ /			nm											
/ /			nm nm											
Signatura:	1	1		_	N 1						D-4		,	,
Signature:					<u>Na</u>	ame:					Date		/	1
* Delete as ap	propriate	e												

APPENDIX E: PROFORMA FOR RECORD OF CONSTRUCTION DATA Design of road surface dressings to Road Note 39 (Seventh Edition)