asPECT Software Tool

USER MANUAL

Version 2.1 – December 2014

CONTENTS

Foreword	5
Overview of asPECT	7
Main Screen	8
Material Screen	9
Plants Screen	10
Project Screen	11
Constants Screen	12
Getting Started with the asPECT Software Tool	13
Installation	13
Running the Tool	13
Saving and Opening Work	13
Copy Protection	14
Material Screen Operations	15
Creating a New Material	15
Create from Production Energy	15
Basic Data	15
Electricity	16
Other Fuel	17
Water Usage	18
Site Works	19
Overburden Removal and Site Restoration	20
All Consumables	20
Create from CO ₂ e Figure	22
Plant Screen Operations	24
Creating a New Plant	24
Basic Data	24
Electricity	25
Other Fuel	25
Water Usage	26

	Heating and Drying Consumption	27
	Material Transport to Plant	28
	Mixtures – Normal Process	29
	Mixtures – Special Process	30
	Energy Consumption	32
	Plant Report Summary	33
Project Scre	en Operations	34
Creatin	ng a Project	34
	Basic Data	34
	Material Transport to Site	35
	Site Works Materials	36
	Asphalt Courses	36
	Laying and Compacting	37
	In-Situ Maintenance	38
	Lifetime Results	39
	Excavation	40
	Project Result Summary	42
	Detailed Mix Results	42
	Project Report Summary	43

Constants Screen Operations	45
Constants Forms	45
Editing Constants	45

Appendix A

Transport Assumptions	47
-----------------------	----

Figure 1 - Welcome screen

Foreword

The asPECT software and this user guide accompanies the protocol for calculating the life cycle greenhouse gases in asphalt¹. The suite also includes the further guidance document which is designed to provide extra interpretation and justification of the clauses within the protocol and to demonstrate how applicable sections of the *Publically Available Specification for the Assessment of the Life Cycle Greenhouse Gas Emissions of Goods and Services* (PAS 2050:2011; British Standards institution, 2011) have been followed. asPECT makes comprehensive use of Defra's *Government GHG Conversion Factors for Company Reporting* (2013). The protocol, guidance document, this user guide and the software tool together constitute asPECT.

The software tool is designed to provide a framework which contains the necessary formulae, emissions factors and default data to calculate the 'cradle-to-grave' GHG emissions of asphalt products in accordance with the protocol clauses, covering the 10 steps of the asphalt life cycle indicated in Figure 2. It is designed primarily to be used by asphalt producers and contractors who have access to the detailed information that it requires to operate (which can easily be gathered through typical company accounting systems). The information generated by the

¹ **Wayman M (2014)** Protocol for the calculation of whole life cycle greenhouse gas emissions generated by asphalt. TRL Published Report. Wokingham: TRL Limited.

software is then passed onto client organisations in the pre-defined output formats which are built into the program.

Life	-cycle stage	Description
1	Raw Material Acquisition	Acquiring raw materials from the natural environment with the input of energy
2	Raw Material Transport	Transporting acquired raw materials to processing
3	Raw Material Processing	Crude oil refining, rock crushing and grading, recycled and secondary material reprocessing
4	Processed Material Transport	Transporting processed raw materials to site of manufacture of bitumen bound highway components
5	Road Component Production	Production of bitumen bound mixtures
6	Material Transport to Site	Delivery of materials to site
7	Installation	Placing materials at the construction site, mobilisation of plant and labour
8	Scheme Specific Works	Installation of other specified materials direct to site (e.g. aggregates and geosystems)
9	Maintenance	Interventions to maintain the road: overlay, surface dressing works, patching, haunching etc.
10	End of Life	Excavation and material management, mobilisation of plant and labour

Figure 2- Ten step asphalt life cycle indicating scope

In 2013, a review of asPECT was commissioned. Part of the remit of this review was to update the software tool, with the following two objectives:

- a) To add additional functionality to the asPECT software, in order to facilitate the use of non-UK specific emissions factors for international users, and those requiring a more customisable approach with regards to recycling-recyclability allocation and consideration of residual binder activity.
- b) To update specific emissions factors for materials, fuels and transport in the software tool, where new and appropriate data sources have become available.

These two objectives have been met in producing the asPECT Software Tool version 3.1. Where applicable, updates have been added to this document to explain the additional functionality.

Overview of the asPECT Software Tool

Throughout this document, the latest version of the software is referred to, namely v3.1.

The tool centres around the following main elements:

- Main Screen;
- Materials Screen;
- Plants Screen; and the
- Project Screen.

All functions can be accessed through these main elements.

Also included are **six** categories of data:

- Material;
- Energy Consumption;
- Transport;
- Mixtures;
- Maintenance; and
- End of Life.

Although these data types are essentially independent entities, certain elements may contain parts of others e.g. End of Life data contains inputs from both Transport and Mixtures.

TRL

Main Screen

The Main Screen is the primary element of the tool from which all other elements are accessed. The main screen consists of a menu bar, toolbar, workspace and a status bar.

The menu bar contains 3 main menus:

- File;
- Windows; and
- Help.

For more information on the File menu, see section "Getting Started with the software tool".

The <u>File</u> menu contains all the basic operations for the tool, such as creating a new file or opening and saving existing files.

The <u>Window</u> menu allows you to arrange the windows that you currently have open to make them easier to work with.

The <u>Help</u> menu allows you to access the 'About' screen which contains information regarding the software version, licence agreement and contact details for technical support.

The toolbar contains 4 buttons:

and edit existing ones.

- Materials
- Plants
- Projects
- Constants

The <u>Materials</u> button opens the Materials main screen and provides an access point to create new and edit existing materials.

The <u>Plants</u> button opens the Plants main screen which displays details of all the plants entered into the tool. From here you have access to create new plants

Plants

The <u>Projects</u> button opens the Projects main screen which displays details of all saved projects in the software. From here you have access to create new projects and edit existing ones.

The <u>Constants</u> button opens a number of editable forms when using the software's "open access" mode. From here you can specify your own constants for use in relation to a particular asPECT file.

Figure 3 – Toolbar icons

The status bar located along the bottom of the window contains a progress bar, to indicate the status of a file being opened or saved, and a link to the http://www.sustainabilityofhighways.org.uk website.

Materials Screen

Name	Category	Data Source	Source	Input Date	Input Mode	Valid Date	kg CO2e / t
Adhesion Agents	Adhesion Agents	Industry average, 2009		17/01/2012	Protocol	01/01/2010	1,200.0
Bitumen	Bitumen	Eurobitume, 2011		17/01/2012	Protocol	01/05/2011	190.0
Bitumen Emulsion (residual b.	Bitumen Emulsions	Eurobitume, 2011		17/01/2012	Protocol	01/01/2010	220.0
Cement (Portland Cement C	Cement	SA Cement & Concrete Instit		17/01/2012	Protocol	01/01/2010	990.0
Fibres	Fibres	Industry average, 2009		17/01/2012	Protocol	01/01/2010	0.8
Fluxes (kerosene based)	Fluxes	European Commission, 2009		17/01/2012	Protocol	01/01/2010	370.0
GGBS	Ground Granulated Blast Fu	SA Cement & Concrete Instit		17/01/2012	Protocol	01/01/2010	130.0
Hydrated Lime	Hydrated Lime	Hammond & Jones, 2011		17/01/2012	Protocol	01/01/2010	780.0
PFA	Pulverised Fuel Ash (PFA)	SA Cement & Concrete Instit		17/01/2012	Protocol	01/01/2010	1.5
Polymer Modified Bitumen	Bitumen - Polymer Modified (Eurobitume, 2011		17/01/2012	Protocol	01/01/2010	370.0
Polymer Modified Bitumen E	Bitumen Emulsions - Polyme	Data collated by the Refine		17/01/2012	Protocol	01/01/2010	350.0
Water	Other	SA Cement & Concrete Instit		17/01/2012	Protocol	01/01/2010	0.9
Wax (Fischer-Tropsch synth	. Waxes	Estimate from European Join		17/01/2012	Protocol	01/01/2010	5,700.0
Wax (Crude derived paraffin	. Waxes	European Commission, 2009		17/01/2012	Protocol	01/01/2010	370.0

Figure 4 - Materials main screen

The Materials screen is used to view the existing material data held in the software and to edit or add new materials.

The screen contains the following buttons: 'Create from Production Energy' and 'Create from CO_2e Figure'.

See Protocol Section 2.5

A double left click with the mouse opens the selected material for editing. **Any changes made will be reflected immediately and cannot be undone.**

A right click with the mouse brings up the option to delete the selected material. **Please note, this action cannot be undone once selected.**

Default material data cannot be edited or deleted from the software. Updates to these may be made via updates released in the future by the asPECT development team.

TRL

Plants Screen

Figure 5- Plants main screen

The Plants screen is used to view the existing asphalt plants held in the software and to edit or add new asphalt plants.

The screen contains a single button: 'Add Plant'.

A double left click with the mouse opens the selected plant for editing. **Any changes made will be reflected immediately and cannot be undone.**

A right click with the mouse brings up the option to delete the selected Plant. **Please note, this action cannot be undone.**

Project Screen

Figure 6- Projects main screen

The Projects screen is used to view the existing projects held in the software and to edit or add new projects.

The screen contains a single button: 'Add Project'.

A double left click with the mouse opens the selected Project for editing. Any changes made will be reflected immediately and cannot be undone.

A right click with the mouse brings up the option to delete the selected Project. **Please note, this action cannot be undone.**

- 1	ĿÞ	٢L

Constants Screen

Consumables T	ransport Recycling and End-of-Life Asphal	t Courses					
	Electricity						
	Name	Unit	C02	e Conversion	Default		
	UK Grid	kWh		0.54522	1.54522	Restore Default	
	Renewable Retain	kWh		0	1	Restore Default	
	Renewable Sell	kWh		0.54522	1.54522	Restore Default	
	Fuel						
	Name	Unit	CO2	e Conversion	Default		
	Diesel	tonnes		3808.2	1.2	Restore Default	
	Petrol	tonnes		3722.3	1.3	Restore Default	
	Natural Gas	kWh	•	0.20322	1.20322	Restore Default	
	Gas Oil	tonnes	•	4090.6	4090.6	Restore Default	
	Fuel Oil	tonnes		3766.5	3766.5	Restore Default	
	Burning Oil	tonnes	•	3750.1	3750.1	Restore Default	
	Industrial Coal	tonnes	•	2718.2	2718.2	Restore Default	
	Liquid Petroleum Gas	kWh	•	0.24127	0.24127	Restore Default	
	Naptha	tonnes		3585	3585	Restore Default	
	Biodiesel	tonnes	•	2032.56	2032.56	Restore Default	
	Bioethanol	tonnes	•	2272	2272	Restore Default	
	Biomethane	tonnes	-	1328	1328	Restore Default	

Figure 7 - Constants main screen

The constants editing screen can be accessed by clicking the Constants Icon when using the open access version of the software (when utilising .oaf files). Here the standard set of constants (or those that have been previously saved) can be overwritten and saved. The default constants can also be restored from this screen.

Getting Started with the asPECT Software Tool

Installation

The tool requires installation. To use the tool on your machine, follow the instructions on the installer, you will need administration rights to do this in Windows. This will install the software folder onto your PC.

Running the Tool

The program runs by double clicking the 'AspectDesktop.exe' file from the extracted folder.

Saving and Opening Work

Work undertaken in the tool can be saved in two types of file, with the extensions .acf and .oaf. If using .acf files then only the standard set of constants built into the tool can be used for the calculations, clicking the Constants icon from the main screen will alert the user to this. Constants can be edited if the 'open access' file type .oaf is selected when the file is saved.

To open and save your work:

Figure 8 - Saving your work

The file can be named as you choose and does not have to be in the same folder as the software executable files.

Clients to whom asPECT data is being reported to should note the differentiation between the two file types, and consider the list of constants in addition to the final figures if .oaf files have been used in reporting.

TRL

Copy Protection

The asPECT software is free to use, subject to registration on the website. You are **not** free to distribute or to edit the software and code protection measures are taken within the software.

For further information please view the Licence Agreement (accepted on installation).

Material Screen Operations

Creating a New Material

The tool comes with preloaded default data including a range of materials (*asPECT Protocol document: Appendix D*). To complete a footprint of a mixture or a project you will need to add your own data, including raw materials. This can be done by entering the kgCO₂e/t for the material if known, or alternatively for aggregates it can be calculated from primary energy consumption from within the software.

Create from Production Energy

To add a new material to the materials list by calculating the $kgCO_2e/t$ from the production or input energy, select the 'Create from Production Energy' button.

The 'Create from Production Energy' screen is organised as a series of tabs along the top of the window. These tabs cover each section of data which is needed for a 'cradle to gate' CO_2e footprint to be calculated.

Basic Data

This tab covers the initial information unique to the material, including the name and source. The material must be placed in a category which best describes it. The category list is provided in Table 1. Only materials that fall under the pre-existing material categories can be created from production energies, all other materials should be created from a CO_2 figure' (see next section).

Table 1- Material categories available when

created from production energy

Crushed Rock
Ground Granulated Blast Furnace Slag (GGBS)
Incinerator Bottom Ash (IBA)
Limestone Filler
Pulverised Fuel Ash
Reclaimed Asphalt Planings (RAP)
Reclaimed Filler
Recycled Aggregate
Sand & Gravel
Slag
Waste Glass

Please ensure that the correct 'Category' for the material is selected as this determines how the material is treated by the software and where in the software it is available for use.

If Reclaimed Asphalt Planings (RAP) is specified as the category, then an additional box requiring the Soluble Binder Content (%) of the RAP is activated. This information is needed by the software when calculating the recycled content discount and the future recyclability of asphalt mixtures.

Electricity

This tab allows the quantification of electricity used in the production of the material. Criteria for electricity usage which should be included in the material footprint is explained in the **Protocol Section 2.5.1.1** and some further explanation of the different types of electricity is provided in **Appendix A**. After selecting the electricity source and specifying an amount, clicking 'Create' adds the energy consumption to the material. If an error has been made, the quantity of electricity used can be edited by double clicking the 'Amount' column and entering the new kWh of electricity used. Alternatively, an entry can be removed by right clicking the row and selecting delete. Please note that this action cannot be undone.

- Select the '**Source**' from the drop down list
- Enter the 'Amount' of electricity used annually
- Click 'Add' to associate these emissions with the material

Figure 10 - Material electricity usage

Other Fuel

This tab allows other fuel use to be associated with the production of the material. The criterion for this fuel usage is again set out in **Protocol Section 2.5.1.1** and some further explanation is provided in **Appendix B**. This tab operates in a similar fashion to the previous 'Electricity' tab.

Select the fuel to be added, select an appropriate unit (most common units of the fuels are included), enter the amount of fuel used and then click 'Create'. This associates the energy consumption to the specified material. If you make an error with the entry, the quantity of fuel used can be edited by double clicking the 'Amount' column and entering the new quantity. Alternatively an entry can be completely removed by right clicking the row and selecting delete. Please note that this action cannot be undone.

- Select the fuel type from the 'Source' drop down list
- Select the desired 'Unit' for the fuel being used
- Enter the '**Amount**' of the fuel annually
- Click 'Add' to associate the emissions with the material

fuel type	B. Select the fuel unit	C. Enter the amount of fuel used	Click to add the fuel emissions to the material
Material Editor	Other Fuel June Jo		
asic data Electricity C Source v Fuel Oil	Other Fuel Water usage Si Unit Amou		I Site Restoration All Consumables
CO2e Source	Amount	Unit	kgCO2e
)iesel	400	litres	1,271.48
uel Oil	100	tonnes	376,650.00

Figure 11 - Material other fuel usage

As a minimum, at least one electricity source *or* one other fuel source **must** be specified to successfully create a material.

Water usage (compulsory for primary aggregates, optional for other materials)

This tab allows the allocation of water usage in the production of the material. The criterion for this water usage is again set out in **Protocol Section 2.5.1.1**. This tab operates in a similar fashion to the previous 'Electricity' tab.

- Enter the 'Amount' of water used annually
- Click 'Add' to add the emissions to the material

Figure 12 - Material Editor water usage

Site Works (compulsory for primary aggregates, optional for other materials)

This tab covers the usage of explosives in the quarrying of the material. Further details on explosive use are again set out in *Protocol Section 2.5.1.1*. Commonly used explosives are selected from the drop down menu and the quantity used in kg can be entered. Click 'Create' to add the explosive emissions to the material.

- Select the 'Explosive' from the 'Source' drop down list
- Enter the **'Amount**' of explosive used annually
- Click 'Add' to add the emissions to the material

Figure 13- Material Editor site works

Overburden Removal and Site Restoration (compulsory for primary aggregates, optional for other materials)

These tabs allow the allocation of fuels used at the material production site for activities such as preparation for quarrying, excavation of overlying soil and restoration of the site at the end of operations. The requirement to quantify this fuel usage is again set out in **Protocol Section 2.5.1.1**. This tab operates in a similar fashion to the previous 'Other Fuels' tab. Select the fuel to be added, select an appropriate unit (most common units of the fuels are included), enter the amount of fuel used and then click 'Add' to save the energy consumption to the material.

- Select the 'Source' from the drop down list
- Select the desired `**Unit**' for the fuel being used
- Enter the annualised 'Amount' of fuel used which can be attributed to the aggregate in question
- A. Select the B. Select the C. Enter the Click to add the fuel unit amount of fuel fuel emissions to fuel type the material used - Material Editor - 0 × Overburden Removal Site Restoration Electricity Other Fuel Water usage Site Works All Consumables Basic data Source Unit Amount litres Add 350 Diesel --CO2e Source Unit Amount kgCO2e Diesel 350 1,112.55 litres OK
- Click '**Add**' to add the emissions to the material

Figure 14 - Overburden removal

All Consumables

The final tab on the Material Editor is for reviewing the consumables used in the creation of the material. It provides a summary and a quick look check that the correct values are being used to calculate the kgCO2e/t for the material being created.

- If any of the values need changing, select the appropriate tab for the entry and edit the value.
- If the emission sources are accurate, click '**OK**' to save the new material to the database.

Туре	CO2e Source	Amount	Unit	kgCO2e	Use
Electricity	UK Grid	1500	kWh	817.83	
Electricity	Renewable Retain	200	kWh	0.00	
Fuel	Diesel	400	litres	1,271.48	
Fuel	Fuel Oil	100	tonnes	376,650.00	
Water	Water	3000	litres	0.90	
Explosives	ANFO	10	kg	40.67	Site Works
Fuel	Diesel	350	litres	1,112.55	Overburden

Figure 15 - Materials editor - all consumables

Create from CO₂e Figure

Adhesion Agents Bitumen Bitumen – Polymer Modified (PMB) Bitumen Emulsions Bitumen Emulsions – Polymer Modified (PMBE) Cement Crushed Rock Fibres Fluxes Ground Granulated Blast Furnace Slag (GGBS) Hydrated Lime Hydraulic Binders Incinerator Bottom Ash (IBA) Limestone Filler Natural Bitumen Other Pigments Pulverised Fuel Ash (PFA) Reclaimed Asphalt Planings Reclaimed Filler Recycled Aggregate Sand & Gravel Slag Waste Glass Waxes

Table 2- Material categories available when entering a CO_2e figure

To create a new material from a known $kgCO_2e/t$ figure, sourced from either a published study or work conducted according to the **Protocol Section 2.5**.

- Enter a '**Name**' for the material
- Select a 'Category' for the new material
- Enter a geographical 'Source' for the material
- Enter the `kg CO₂e/t' figure
 - If **'Reclaimed Asphalt Planings (RAP)**' is selected as the material category, the additional entry box for **'Soluble binder content %**' must be completed
- Enter a description for the **`Data Source**'. This should be the details of where the material kgCO₂e/t figure being used comes from
- Select a 'Valid from Date' for your reference
- Click '**OK**' to save the new material

Figure 16 - Create material from known emissions figure

Plant Screen Operations

Creating a New Plant

Creating a plant involves the allocation of materials, transport, energy used in processing and energy used in heating and drying along with the definition of heating profiles and mixtures. Once you have created a plant, you will be able to see the emissions associated with each of the mixtures you produce.

Basic Data

This tab covers the initial information necessary to create a plant. It requires that you allocate a name, categorise the plant as 'Continuous' or 'Batch' and specify the total annual production of the plant in tonnes.

Electricity

Electricity used in the plant for processing the materials, in accordance with **Protocol Section 2.7 and Appendix A**. The tab operates in the same way as it does when allocating electricity usage for creating a material.

- Select the '**Source**' from the drop down list
- Enter the annual 'Amount' of electricity used
- Click 'Add' to add the emissions to the plant

A. Select the electricity Source		am	inter the ount of icity used		Click to electricity e the p	missions to	
Plant Editor							
Basic data Electricity	Other Fuel	/aterusage Hea	ting & drying ener	gy consumption	Materials Transp	rt To Plant Mixtur	res All Consumables
Source Renewable Retain	Unit Vhit	Amount	250 <u>A</u> dd				
CO2e Source		Amount		Unit		kgCO2e	
UK Grid		5000		kWh		2,726.10	
Renewable Retain		250		kWh		0.00	
Report Summary							<u>0</u> K
	click to an entry						

Other Fuel

Further energy consumption for sources other than electricity at the plant used for processing the material before heating and drying can also be added. The tab operates in the same way as it does when allocating other fuel usage for creating a material.

- Select the 'Source' from the drop down list
- Select the desired `**Unit**' for the fuel being used
- Enter the annual **'Amount**' of fuel used
- Click '**Add**' to add the emissions to the plant

A. Select the fuel type	B. Select the fuel unit	C. Enter the amount of fuel used	fuel emis	add the ssions to plant	
Basic data Electricity Ot Source	her Fuel Water usage He Unit Amou tonnes	eating & drying energy consumption 1	Materials Transport T	Plant Mixtures	_ 🗆 🗙
CO2e Source	Amount	Unit		kgCO2e	
Natural Gas	250	m3		556.00	
Fuel Oil	5	tonnes		18,832.50	
Report Summary					<u>0</u> K

Figure 19 – Other plant fuel

As a minimum, at least one electricity source *or* one other fuel source **must** be specified to successfully create a plant.

Water usage (optional)

This tab allows the allocation of water usage at the plant for the production of the asphalt. The criterion for this water usage is again set out in **Protocol Section 2.7**. This tab operates in a similar fashion to the previous 'Electricity' tab.

- Enter the annual 'Amount' of water used
- Cick 'Add' to add the emissions to the plant

TRL

	A. Enter the volume of water used	Click to add t water emissior the plant	
🛏 Plant Editor			<u>_0×</u>
Basic data Electricity Other Fuel Water	usage Heating & drying energ	y consumption Materials Transport To	Plant Mixtures All Consumables
Source Unit	Amount		
Water Iitres			
CO2e Source Amo	unt	Unit	kgCO2e
Water 200		litres	0.06
Report Summary			<u>о</u> к

Figure 20 - Plant water usage

Heating and Drying Energy Consumption

Energy used in the plant for heating and drying the materials into asphalt is done from this tab which operates in the same way as it does when allocating other fuel usage for creating a material.

- Select the 'Source' from the drop down list
- Select the desired `**Unit**' for the fuel being used
- Enter the annual **`Amount**' of fuel used
- Click 'Add' to add the emissions to the heating and drying energy for the plant

A. Select the fuel type	B. Select the fuel unit	<i>C.</i> Enter the annual amount of fuel used	emission	add the fuel ns to Heating Drying	
Source	ner Fuel Water usage + Unit _ Amou _ Itonnes _	leating & drying energy consumption	Materials Transport T	p Plant Mixtures A	L Consumables
CO2e Source	Amount	Unit		kgCO2e	
Liquid Petroleum Gas	2500	litres		4,196.50	
Gas Oil	5000	litres		17,738.50	
Fuel Oil	20	tonnes		75,330.00	
Report Summary					<u>0</u> K

Figure 21 - Heating & drying energy consumption

As a minimum, at least one fuel source must be specified for 'Heating & Drying' to successfully create a plant.

Materials Transport to Plant

Materials used in the plant to create the mixtures need to have their transport to the plant considered. This tab allows materials and a number of transport steps to be added to the plant.

- Select the 'Material' from the drop down list
- Click 'Add' to associate the material into the plant
- Ensure that the correct material is highlighted on the list
- Select a 'Mode of Transport' from the drop down list
- Adjust the '**Utilisation**' level for the mode of transport (default is 50%)
- Enter the 'Outward Journey Distance' in kilometres
- Adjust the '**Hired Haulage**' percentage for the material (as appropriate)
- For some haulage transport modes, a return journey is not assumed. It can be selected by marking the **'2 Way**' check box
- Click 'Add' to add the emissions for the transport leg to the material

A. Select t material				dd the the plant			B. Highlight the aterial row to begin adding transport	n
Plant Editor asic data Electricity C Material PFA)ther Fuel	Water usage	Healir	ng & drying ener	gy cons	sumptio	n Materials Transport To	o Plant Mixtures All Consumables
Transported Material	Materi	al kgCO2e/t		Legs of Tran	sport		Transport kgCO2e/t	kgCO2e/t
Example Aggregate	4.30	10000		Rigid >17t		•	108.61	112.91
Bitumen	280.00)		Articulated >3	.5-33t,F	Rigid	147.82	427.82
Fibres	0.78			Articulated >3	3t		34.94	35.72
PFA	4.00			Rigid >3.5-7.5	it		26.59	30.59
Articulated >3.5-33 60 Rigid >17t 60	sation	Distance 60 15	0 15	 J Haulage	2 Way -		25 k kgC02e/t 115.10 32.73	
C. Select a mode of transport				D. Adjust th utilisation i required		j	<i>E.</i> Enter the outbound ourney distance	<i>F.</i> Enter the percentage hired haulage
Report Summary								<u></u> K
	•	it click to an entry	,					Click to add the material to the plant

Materials classified under 'Crushed Rock' categories have the 5% loss correction automatically added during the calculation in accordance with the **Protocol Section 2.4**.

Mixtures – Normal Process

Mixtures are defined at the plant by adding materials and entering details about the heating and drying process. This is implemented in accordance with *Protocol Section 2.8.*

- Enter a 'name' for the new mixture
- Click 'Add New Mixture' to create
- Ensure that the correct mixture is highlighted on the list
- Enter the tonnage of 'Annual Production' for the mixture
- Enter the **'Production Rate**' (continuous) or **'Heating Time**' (batch)
- Select a desired 'Material' to add to the mixture from the drop down list
- Enter the 'Percentage' of that material required in the mixture
- Click 'Add' to add the mixture to the plant

т	R	L

	A. Nam mixtu		(create a hixture	new	annua	Enter the al production he mixture		C. Enter the production rate of the mixture
Basic data	Electricity	Other Fuel	Water us	age Heat	ing & drying e <u>A</u> dd New M		Mixture M			cures All Consumables
Mixture Name	Virgin Mix kg CO2e/t	RAP Saving kg CO2e/t	Transport kg CO2e/t	Heating kg CO2e/t	NonHeatir kgCO2e/t		Annual Prod Production I			25
Example	16.08	4.59	47.80	7.63	0.11	67.02	Mix 2			••••••••••••••••••••••••••••••••••••••
Mix 2	22.42	7.00	47.77	3.14	0.11	66.43	Material		Percen	t
Mix 3	23.76	7.52	47.43	5.23	0.11	69.00	Example Ag	gregate	93.0	
							Fibres		0.1	
							PFA		0.4	▲
							Bitumen		6.5	
	Right clic lelete an		Unallocat	ed Product	ion (t)	6000	Materials	Percen		Right click to delete an entry Unallocated % Add
Report Sur	mmary					F				<u></u>
	produc	maining ction ava ion is sh	ilable for			ect the n added t mixture	to the	<i>E.</i> Enter the percentage		Click to add material to the mixture

Figure 23 - Plant mixture creation

Each mixture MUST have 100% of constituent materials defined; The mixture cannot be saved if this is not the case.

The Total Production (t) of the plant MUST be allocated between the defined mixtures; the plant cannot be saved if this is not the case.

Only one bitumen component and one RAP component can be specified per mixture.

TRL

Mixtures – Special Process

To account for the potential use of novel technology and methods in the creation of mixtures, the ability to define a 'special process' is included in the software. This functions in a similar way to creating a normal mixture, but requires a number of further pieces of information to allow an equivalent production rate to be calculated. Further details can be found in **Protocol Section 2.8.3**.

- Enter a '**name**' for the new mixture and
- Click 'Add New Mixture' to create
- Ensure that the correct mixture is highlighted on the list
- Enter the tonnage of 'Annual Production' for the mixture
- Check the 'Calculate Production Rate from known process' checkbox
- Enter the 'Standard Process Energy'
- Enter the 'Non-Standard Process Energy'
- Enter the 'Standard Process Production Rate'
- Select a desired 'Material' to add to the mixture from the drop down list
- Enter the 'Percentage' of that material required in the mixture
- Click 'Add' to add the Mixture to the Plant

Figure 24 - Plant special mixture creation

Each mixture MUST have 100% of constituent materials defined; the mixture cannot be saved if this is not the case.

The Total Production (t) of the plant MUST be allocated between the defined mixtures; the plant cannot be saved if this is not the case.

Energy Consumption Summary

The final tab on the Plant Creator is for reviewing the consumables used at the plant. It provides a quick overview of the values that are being used to calculate the kgCO2e/t for the mixtures being created.

- If any of the values need changing, select the appropriate tab for the entry and edit the value as required.
- If the emissions are accurate, click '**OK**' to save the new material to the database.

Basic data Electricit	ty Other Fuel Water usage Hea	ting & drying energy consumption	Materials Transport To Plant	Mixtures All Consumable
Heating Consumption				
Туре	CO2e Source	Amount	Unit	kgCO2e
Fuel	Liquid Petroleum Gas	2500	litres	4,196.50
Fuel	Gas Oil	5000	litres	17,738.50
Fuel	Diesel	100	tonnes	380,820.00
Ionheating Consum	tion Summary			
	otion Summary CO2e Source	Amount	Unit	kgCO2e
Nonheating Consump Type Electricity		Amount 5000	Unit kWh	kgCO2e 2,726.10
Type Electricity	CO2e Source	The second se	The second s	EUROPERICA STOLEN
Туре	CO2e Source UK Grid	5000	kWh	2,726.10
Type Electricity Electricity Fuel	CO2e Source UK Grid Renewable Retain	5000 250	kWh kWh	2,726.10 0.00
Type Electricity Electricity	CO2e Source UK Grid Renewable Retain Natural Gas	5000 250 250	<mark>kWh</mark> kWh m3	2,726.10 0.00 556.00
Type Electricity Electricity Fuel Water	CO2e Source UK Grid Renewable Retain Natural Gas Water	5000 250 250 250 200	kWh kWh m3 litres	2.726.10 0.00 556.00 0.06
Type Bectricity Bectricity Fuel Water Fuel	CO2e Source UK Grid Renewable Retain Natural Gas Water	5000 250 250 250 200	kWh kWh m3 litres	2,726.10 0.00 556.00 0.06 7,616.40
Type Electricity Electricity Fuel Water	CO2e Source UK Grid Renewable Retain Natural Gas Water	5000 250 250 250 200	kWh kWh m3 litres	2.726.10 0.00 556.00 0.06

Figure 25 - Plant energy consumption summary

TRL

Plant Report Summary

Clicking the '**Report Summary**' button opens a new window with a customised report on the currently open plant. This report is in a PDF format and can be saved using the menu which appears when the mouse cursor is hovered over the bottom of the report window. The report includes a number of key features:

- Name, plant type and date
- Annual production tonnage and number of asphalt mixtures created and materials used
- Energy usage total, processing and heating and drying breakdown
- Environmental impacts total kg CO₂e and kg CO₂e/tonne
- Notes section which includes important considerations and decisions made during the footprinting process. This includes:
 - Any special Processes specified for heating and drying

Figure 26 - Plant summary report

Many plant can be created by duplicating the process described above.

Project Screen Operations

Creating a Project

By creating a project it is possible to complete the full lifecycle considerations of the road. Multiple mixtures and materials can be added to a project from different sources. Additionally, transport, energy used in laying and compacting, maintenance interventions, and energy used in excavating and disposal of the materials at the end of the roads life can all be specified.

Basic Data

This tab covers the initial information necessary to create a project. It requires that you allocate a name, provide a description and categorise the road as 'Designed' or 'Evolved'. This categorisation is necessary to apply the appropriate lifetimes to asphalt courses in line with **Protocol Section 2.12**.

	Navigate the 'Project Editor' via the tabs	A. Enter the desired name for the Project	B. Enter a description for the Project	r	<i>C.</i> Select the road type for the Project
🖌 Proj	ect Editor				
Lifetime Basic d Projec	Results Excavation Projec	t Result Summary Detailed Site Works Materials Asp •		Laying and Compactin	
Report	Summary				<u></u> K

Figure 27 - Project Basic Data

TRL

Material Transport to Site

To start creating a project it is first necessary to allocate the materials and asphalt mixtures to be used.

- If choosing a material, for site specific works, such as backfill or bond/tack coats, select `(*None*)' from the `**Plant**' list and the required material from the `**Material**'
- If choosing an asphalt mixture, select the required plant from the '**Plant**' list and the asphalt mixtures produced by this plant will be available to select from the '**Material**' list
- Click `Add'

Next it is necessary to define the transport required to move the material or mixture from source to the project site. This section of the software works in the same way as the section that allows transport to be specified in the **Plant Editor**.

Site Works Materials

"Direct to site" materials defined on the previous tab appear here so that the quantities used in the project can be specified.

- Select each material from the 'Material' list
- Enter the required tonnage of the selected material
- Click 'Add'

	A. Select an available material		B. Enter the tonnage of site works material
Lifetime R	t Editor esults Excavation Project Resu		d Compacting In-situ Maintenance
Material	Bitumen Emulsion (residual bitum	 To	innage 2.5 Add
Material Bitumen I	Emulsion (residual bitumen)	Tonnage 2.5	
			Click to add the desired amount of the material
Report Si	ummary		<u>o</u> k

Figure 29 - Project site works

Asphalt Courses

Asphalt mixtures selected on a previous tab are here assigned to an asphalt course and the required quantity for the project is entered. The type of courses that the mixtures can be assigned to varies depending on whether an 'Evolved' or 'Designed' road was specified when creating a project.

- Choose a mixture from the 'Material' list.
- Choose a type of course for the mixture from the 'Course' list
- Enter the tonnage for the mixture and course defined.
- Click `Add'

ONLY one mixture can be specified to the surface course per project.

Figure 30 – Specifying asphalt courses

Laying and Compacting

Energy used in the installation of the asphalt mixtures selected on the previous tab are defined here.

- Select either the 'Default' laying and compacting emissions or
- Select the 'Custom' checkbox and
- Enter the custom emissions associated with laying and compacting

Custom Laying and Compacting emissions figures must be calculated in accordance with *Protocol Section 2.10*

Figure 31 - Laying and compacting

In-Situ Maintenance

This tab allows you to add maintenance interventions to extend the lifetime of the surface course.

- Select the type of surface 'Treatment' from the drop down list
- Enter the emissions for the treatment in 'kgCO₂e/t'
- Enter the 'Tonnage' for the treatment selected
- Enter the 'Additional Lifetime'
- Click 'Add' to assign the In-Situ Maintenance Treatment to the course

In-situ maintenance emissions figures must be calculated in accordance with **Protocol** Section 2.12.2

т	ъ	
	n	_

A. Select a sur treatment typ		B. Enter the emissions for the treatment		C. Enter the of the tre		
Project Editor						
Lifetime Results Excavation Basic data Material Transpo Asphalt Material Type Surface-Paver Laid Surface Treatment	ort To Site Site Wo		ohalt Courses Asph	alt Laying and Comp 2e /t Tonnage	Contract The Contract of Contr	Maintenance ime (years)
Surface dressing			•	12 🕈 6.5	I ▲	4 <u>A</u> dd
Treatment	kgCO2e/t		Tonnage	Add	itional Lifetime	
Retexturing	45.4		20	6		
Surface dressing	12		6.5	4		
Right click t delete an en	try			additi gained the	Enter the onal lifetime by the use of treatment	of
Surface Course Additional Lif	etime (years)			20	mace Course Life	etime (yea's)
Report Summary						<u>о</u> к
					Click to desired a the mi	mount of

Figure 32 - In-situ maintenance

Lifetime Results

The Lifecycle Results tab presents a summary of tonnages and emissions figures by road course and gives an annualised emissions breakdown. This provides a basis to compare different mixtures on a life cycle basis.

Total emissions per tonne, per year, based on the total asphalt tonnage and shortest lifetime of an included course 🖌 Project Editor - 0 × sphalt Courses Asphalt Laying and Compacting In-situ Maintenance Basic data | Material Transport To Site | Site Works Materials | Lifetime Results Excavation Project Result Summary Detailed Mix Results Course **Effective Lifetime** kgCO2e kgCO2e/tonne/year Tonnes 20.00 226.50 19,081.15 4.21 Surface 0.00 0.00 Base Total kgCO2e/tonne/year 923 Total kgCO2e/year 5,784.80 valid for the shortest component lifetime of 20.00 years Basic Lifetime(years) Additional Lifetime **Effective Lifetime** Treatments Surface 10.00 2 10.00 20.00 OK Report Summary Total emissions per year, Equivalent lifetime of based on the shortest lifetime the surface course of an included course after treatments

Excavation

Removal of the material at the end of life and the disposal/recycling of the excavated material can be either based on default values calculated from details about the planing operation or a custom figure can be used.

- Select the 'Calculate from Default' checkbox
- Select the 'Width' of the planing area
- Select the planing **`Depth**' OR
- Select the 'Use Custom Figure' checkbox
- Enter the desired custom figure
- Allocate the percentage of excavated material between 'stockpiled' and 'landfilled'
- Complete the transport sections for both stockpiling and landfilling options in the same way as on previous transport tabs

Custom Excavation emissions figures must be calculated in accordance with *Protocol* Section 2.13.2

Select the source of the planing off energy emissions factor.	Click to add transport for material to the stockpile
V Project Editor	
Basic data Material Transport To Site Site Works Materials Asphalt Courses Asphalt Laying and Compacting In- Lifetime Results Excavation Project Result Summary Detailed Mix Results In-	situ Maintenance
Total Project Tonnage 626.5	
Planing-off	
Calculate from default C Use custom figure	
Width (m) 0.35 💌 Depth (mm) 10 💌 14.7 kg CO2e/t	
Waste Management	
	Fonnage 595.175
	d haulage
Rigid >17t _ 65 式 % 10 km	0
Mode Utilisation Distance Hired Haulage 2 Way kgCO2e/t	
Rigid >17t 65 10 0 - 20.57	
	Fonnage 31.325
	d haulage 0 ़ ∰ % 2 way
Mode Utilisation Distance Hired Haulage 2 Way kgC02e/t Rigid >17t 50 12 0 - 28.15	T
Report Summary	<u></u>
Figure 34 – End-of-life processes	Click to add transport for material to the landfill

Project Result Summary

The Project Result Summary tab gives a breakdown of the $kgCO_2e$ and $kgCO_2e/t$ emissions of every step of the lifecycle as shown in Figure 2.

Subtotal figures are also given for:

- Steps 1 to 7 Material acquisition to asphalt installation on site
- Asphalt Material acquisition to excavation, excluding any direct to site/site specific works materials

Total emissions for asphalt,

• Project – Grand Total for the project

ansport to site sit ation Project Res nary xtraction and proce to plant	te Works Materials Asph ult Summary Detailed M ssing	ix Results			I in-situ Maintenanc	
nary extraction and proce			kg			
	ssing		kg			
	ssing			CO2e / t	Total kg CO2e	
to plant				10.93	6,557.97	
			ſ	92.20	55,317.08	
ep 5 Asphalt production					36,633.79	
Step 6 Transport to site					16,201.14	
d compacting			Г	6.00	3,600.00	
orks			Г	350.38	875.95	
nce			ŕ	37.21	986.00	
•			Î.	25.14	15,085.00	
		Steps 1 to 7	As	phalt	Project	
	Total kg CO2e	118,309.98			135,256.93	
	tonnes	-	626.50	626.50 629.00		
	kg CO2e /tonne	197.18	214.49	Í		
					<u>о</u> к	
an M	it to site and compacting works ance fe	and compacting works ance fe Total kg CO2e tonnes kg CO2e /tonne	and compacting works ance fe Total kg CO2e tonnes kg CO2e /tonne 197.18 Total emissions	ind compacting works ance fe Steps 1 to 7 As Total kg CO2e 118,309.98 134,380. tonnes 626.50	and compacting works ance fe Total kg CO2e kg CO2e /tonne Total emissions for Steps Total	

Figure 35 - Project result summary

Detailed Mix Results

The Detailed Mix Results tab gives a breakdown the $kgCO_2e$ emissions of every asphalt mixture used in the project. The emissions associated with each mixture are given for:

- Steps 1 to 3 Material acquisition, transport and processing
- Step 4 Material transport to asphalt plant
- Step 5 Asphalt production
- Step 6 Asphalt transport to site

The total emissions and emissions per tonne of asphalt mixture are also shown.

Example Plant Example Mixture 1 200.00 2,296.53 9,559.22 1,547.88 4,691.52 18,095.15 90.48 Plant A Test Mixture 2 400.00 4,261.45 45,757.86 35,085.91 11,509.62 96,614.83 241.54	Plant	Material	Tonnage	1 to 3	4	5	6	Total CO2e	Total CO2e/t
Plant A Test Moture 2 400.00 4,261.45 45,757.86 35,085.91 11,509.62 96,614.83 241.54	Example Plant	Example Mixture 1	200.00	2,296.53	9,559.22	1,547.88	4,691.52	18,095.15	90.48
	Plant A	Test Mixture 2	400.00	4,261.45	45,757.86	35,085.91	11,509.62	96,614.83	241.54
Report Summary	∢ Report Summa	ity							<u>o</u> k

Project Report Summary

Clicking the '**Report Summary**' button opens a new window with a customised report on the currently open project. This report is in a PDF format and can be saved using the menu which appears when the mouse cursor is hovered over the bottom of the report window. The report includes a number of key features:

- Name, description and date
- Numbers and quantities for both asphalt and site work materials
- Environmental impacts Total kg CO₂e and asphalt kg CO₂e/t
- Notes section which includes important considerations and decisions made during the footprinting process. This includes:
 - Use of non-default data for processes
 - Maintenance treatments specified

- TRL
- $_{\odot}$ Any special processes specified for heating and drying

Figure 37 - Project summary report

Constants Screen Operations

Constants Forms

Constants can be edited when files with the .oaf extension are utilised. The default file extension is .acf; this can be changed by clicking save and selecting .oaf from the file type menu.

Clicking the Constants Icon from the main screen will reveal the window containing forms, as displayed in Figure 38 below.

Consumables	Transport Recycling and End-of-Life Asphalt Courses						
	Electricity						
	Name	Unit	CO26	e Conversion	Default		
	UK Grid	kWh		0.54522	1.54522	Restore Default	
	Renewable Retain	kWh		0	1	Restore Default	
	Renewable Sell	kWh		0.54522	1.54522	Restore Default	
	Fuel						
	Name	Unit	CO26	e Conversion	Default		
	Diesel	tonnes	•	3808.2	1.2	Restore Default	
	Petrol	tonnes	•	3722.3	1.3	Restore Default	
	Natural Gas	kWh	•	0.20322	1.20322	Restore Default	
	Gas Oil	tonnes	•	4090.6	4090.6	Restore Default	
	Fuel Oil	tonnes	•	3766.5	3766.5	Restore Default	
	Burning Oil	tonnes		3750.1	3750.1	Restore Default	
	Industrial Coal	tonnes	•	2718.2	2718.2	Restore Default	
	Liquid Petroleum Gas	kWh	•	0.24127	0.24127	Restore Default	
	Naptha	tonnes		3585	3585	Restore Default	
	Biodiesel	tonnes		2032.56	2032.56	Restore Default	
	Bioethanol	tonnes		2272	2272	Restore Default	
	Biomethane	tonnes	•	1328	1328	Restore Default	

Figure 38 – Editable constants forms

There are four forms in total aligned to tabs. Each contains a set of constants that can be edited.

Editing Constants

Select one of the four tabs to edit a set of constants:

- Consumables electricity, fuels, explosives and water.
- Transport all transport modes and handling.
- Recycling and End-of-Life the constants used in the asPECT Protocol Section 2.6 calculations and the recycled content/recyclability allocation can be modified here.
- Asphalt Courses where aspirational design lifetimes can be altered.

Firstly locate the constant that you wish to edit. Then, moving across the screen from right to left, select the required unit and then specify the constant in the CO_2e conversion box. The default constant (as used in .acf files) is provided as a reference point. If you wish to restore the default constant then click the "Restore Default" button. Any of the constants listed in the form can be edited (and restored).

Clicking the "save constants' icon at the bottom right of the screen will close the screen. The specified constants will be utilised in all of the calculations throughout the remainder of the file, whether pre-existing or new.

If a file is opened that was created in a previous version of asPECT (pre-v3.1), then the constants file will initially display the original constants used when first opened as a .oaf file. If you choose to edit the constants file from here then the pre-2013 will be lost – clicking on "restore default" will bring up a v3.1 default constant.

Appendix A

Transport Assumptions

To allow the user to make the most accurate estimations of road transport emissions the asPECT software has been built to include the utilisation factors of vehicles in the calculations. This approach calculates the emissions for the whole journey and for the whole load carried. It is then necessary to attribute the emissions per tonne of the material/mixture conveyed.

For each category of road haulage vehicle a "maximum payload" is used to apportion emissions per tonne. For each journey, the emissions will be reported in kgCO₂e/t. The table below gives the maximum payload for each category.

Table 3 - Maximum payloads for road

transport				
	Max Payload (t)			
Rigid				
>3.5-7.5t	2.4			
>7.5-17t	10			
>17t	20			
Articulated				
>3.5-33t	18			
>33t	30			

Should the maximum payloads not be representative of the journeys undertaken in a given assessment, lower payloads can be reflected by adjusting the utilisation factor (f). These constants can also be modified in .oaf files, by selecting the transport tab via the Constants Icon.