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Executive Summary 

On the Strategic Road Network (SRN) monitoring of pavement asset condition is currently 
achieved using dedicated surveys that measure the functional (e.g. user experience such as 
roughness, and visual appearance), safety (e.g. skid resistance) and structural (e.g. bearing 
capacity) condition. This data is provided by annual network level surveys to support long 
term planning, and more frequent data collection to detect defects that are rapidly 
developing (e.g. potholes). 

In recent years a new source of data has become available that is referred to as 
“crowdsourced data”. This can be provided by vehicles or mobile phones, on a network 
wide basis, from multiple sources. Crowdsourcing has the potential to change the way in 
which data is used to manage the condition of the SRN. The study presented in this report 
investigates whether and how crowdsourced data has the potential to be applied in the 
management of the condition of SRN. 

The study obtains example data from two crowdsource data types – data provided by 
sensors installed on standard vehicles (vehicle telemetry data) and data from mobile phones 
(mobile phone data) – over two geographical regions and over two specific time periods. A 
focussed, case study-based investigation is carried out to determine if, and to what extent, 
the crowdsourced data types could be applied to understand road condition and how it 
complements the assessment of the functional and safety level of service measured by 
current data collection methods. 

The vehicle telemetry data provided to the study consists of point “events”, each 
accompanied by its geolocation and timestamp. The study focusses on the examination of 
telemetry “slip” and “bump/pothole” events. The mobile phone data is also limited to the 
reporting of events, in this case “deceleration” events, accompanied by their geolocation 
and timestamp. No detail was provided on the methodology deployed by the providers to 
determine/identify these events. 

It is noted that the crowdsourced data available to the study covered only a short period of 
time, and a limited number of data types (“events”). The dataset is not representative of the 
coverage and content of crowdsourced data that could be achieved if routinely applying the 
data for road condition assessment. The conclusions of the study must be considered in the 
light of the data available to it. However, the study provides an insight into the future 
potential of this data. 

The study finds that the crowdsourced data is relevant to road condition management. 
However, to enable the data to be applied alongside current data sources the data must be 
aligned, summarised and clustered. Significant effort is required to achieve this in the study. 
It is concluded that there would be benefit in developing tools within Road Asset 
Management Systems to facilitate smoother access, fitting, alignment and analysis of 
crowdsourced data. Refinements in the way crowdsourced data is delivered by providers 
might help to make this more straightforward. 

When considering functional condition (roughness/bumpiness) specific case studies show 
potential for the identification and tracking of potholes. However, as the crowdsourced data 
provided is limited to a range of thresholded values (or because of the short collection time-
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period) there is limited agreement between the crowdsourced data and conventional 
roughness measurements. The provision of greater detail in the bump event data (e.g. the 
vertical acceleration or an appropriate derived parameter) might provide a more useful 
measure to assist in understanding condition. Data relating to the vehicle type/suspension 
characteristics may also useful. 

The study directly compares telemetry slip events with conventional measurements of skid 
resistance (SCRIM). This direct comparison does not show a strong correlation. This is not 
surprising as the time period covered by the telemetry data is short, and it may be expected 
that measurements would have to “build up” on individual sites to improve the relationship 
with the SCRIM. A coverage assessment suggests that it would take a significant length of 
time to achieve network-wide measurements and that the crowdsourced data would not, as 
it stands, be ready to replace fundamental network measurements such as SCRIM. 

Because the mobile phone deceleration data can be related only to the demand for skid 
resistance requested by the vehicle, and not the supply of skid resistance, the mobile phone 
data is not compared directly with SCRIM measurements. Instead, as SCRIM site category 
has a closer relationship with the expected demand for skid resistance on a particular site, 
the study compares the deceleration event data with site category. There is a reasonable 
relationship, confirming that the site category established for the sites used as case studies 
in the work were reflected by the level of braking demand recorded on the sites in the 
mobile phone data. The observations suggest that deceleration data could provide further 
insight to support site categorisation. 

Although there is little direct correlation with conventional measurements of skid 
resistance, there is strong evidence to support the use of the crowdsourced data in the 
assessment of risk. This includes deciding how to define site categories, and to support 
decisions on whether interventions should be made. Where sites have been found to have 
low skid resistance, the crowdsourced data could be used to determine whether a site has a 
disproportionate number of vehicles “demanding” this skid resistance, and it could also be 
used to bring sites to the road operator’s attention which may not have been flagged by the 
SCRIM data. As for the functionality data, the provision of greater levels of detail in the data 
may help provide a more useful measure to assist in understanding the condition. 

It is noted that, although there is strong potential for the application of crowdsourced data 
to manage safety condition, the data may not provide a comprehensive understanding of 
risk. There may be sites on which collisions are likely (or have occurred), for which low 
numbers of events have been recorded. The risks presented by these sites will be 
misrepresented in the crowdsourced dataset. Future studies into the application of 
crowdsourced data should also consider these types of site. 

Finally, given the potential for this data, it is recommended that data providers and end 
users (e.g. asset management system providers or road administrations) collaborate to 
refine the approach taken to reporting the data, to ensure that the content aligns with the 
requirements of the user.
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1 Introduction 

To manage the Strategic Road Network (SRN) asset there is a need to understand its 
condition. This is currently achieved using dedicated surveys that measure the functional 
(e.g. user experience such as roughness, and visual appearance), safety (e.g. skid resistance) 
and structural (e.g. bearing capacity) condition. For medium and long-term planning, this 
data is provided by annual network level surveys. For short/immediate term maintenance 
planning further data collection is undertaken on a more frequent basis to detect defects 
that are rapidly developing, typically to resolve failures in the functional or safety level of 
service (e.g. potholes). 

In recent years a new source of data has become available that is referred to as 
“crowdsourced data”. This can be provided by vehicles or mobile phones, on a network 
wide basis, from multiple sources. Crowdsourcing has the potential to change the way in 
which data is used to manage the condition of the SRN. However, although these sources of 
data have potential in this application, they were not necessarily developed for the purpose 
of measuring road condition. 

The study presented in this report investigates whether and how crowdsourced data has the 
potential to be applied in the management of the condition of SRN. The approach taken in 
the study is to: 

• Obtain example data from two crowdsource data types – data provided by sensors 
installed on standard vehicles and data from mobile phones – over two geographical 
regions of the network, collected over two specific time periods. 

• Obtain the data provided by conventional condition data sources over the same 
regions. 

• Undertake a focussed, case study-based investigation to determine if, and to what 
extent, the crowdsourced data types could be applied to understand the condition of 
the network with respect to the assessment of the functional and safety level of 
service. The approach has been to formulate a question regarding the application of 
the crowdsourced data in a particular application, and then to explore the data to 
determine whether there is strong, weak or inconclusive evidence to support the use 
of the data in this application. 

A summary of the overall observations and conclusions that can be drawn from the study is 
presented, with recommendations for steps that could be taken to begin the introduction of 
this data into road condition management on the SRN. 

It should be noted that the crowdsourced data available to this study covers only a short 
period of time, and a limited number of data types. The dataset is not representative of the 
coverage and content of crowdsourced data that could be achieved if routinely applying this 
data for road condition assessment. The conclusions of the study must be considered in the 
light of the data available to it. However, this study does provide an insight into the future 
potential of this data.  
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2 Background – current approach to the collection and use of 
road condition data on strategic roads 

Currently, the management of the condition of pavements on the SRN draws on a number 
of data sources, primarily obtained using dedicated network surveys. Data is collected, fitted 
to the network and loaded into network databases. Analysis is then carried out in which the 
data is assessed, both to report condition at the network level and to identify locations in 
need of further investigation or maintenance. The following provides a summary. Note that 
this is not a comprehensive summary; it aims to provide a context to the application 
considered for crowdsourced data in later sections of this report. 

2.1 Measurement of functional condition (shape and appearance) 

The functional condition of road pavements is primarily associated with the provision of a 
road surface that enables vehicles to travel with an acceptable level of comfort, at speeds 
appropriate to the pavement design. The assessment of functional condition is achieved 
through measurement of the surface profile of the pavement. The transverse profile is 
typically used to determine the depth of rutting, which can affect vehicle handling and cause 
aquaplaning. The longitudinal profile can be used to quantify the ride quality and identify 
bumps and potholes. 

On the SRN functional condition is measured by the TRACS survey (Figure 2-1). The TRACS 
survey vehicle measures 3D road shape (profile) and collects images of the road surface at 
traffic-speed. Algorithms convert the profile measurements into condition parameters that 
include pavement rutting and longitudinal profile (reported as enhanced Longitudinal Profile 
Variance (eLPV) in three different wavelengths - 3m, 10m, 30m). Whilst the eLPV data 
provides an indication of the general roughness of the pavement, a further parameter is 
calculated, called the Bump Index, which reports the location of significant bumps which 
may occur at localised defects such as potholes, failed joints and failed patches. The Image 
data is also deployed to identify visual deterioration (cracking). TRACS surveys are carried 
out annually in all lanes. 

 

 

Figure 2-1: TRACS survey vehicle 
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In addition to TRACS annual surveys of visual condition and functional condition, further 
visual assessments of the condition of the SRN are carried out on a more frequent basis. 
These include daily safety inspections, in which engineers identify defects which have 
developed in the pavement, primarily to support the rapid response/resolution of safety 
hazards, rather than for the purpose of data collection for longer term asset management. 

2.2 Measurement of safety (skid resistance) 

The measurement of skid resistance is used as a primary source data to quantify safety 
information, because insufficient skid resistance (friction) may reduce the ability of vehicles 
to safely navigate bends or stop within an acceptable distance. On the SRN skid resistance is 
measured by surveys carried out using the Sideway-force Coefficient Routine Investigation 
Machine (SCRIM). The SCRIM uses a test wheel toed-in towards the centre of the machine 
to create a sideways force as the machine travels (Figure 2-2). The apparatus measures the 
ratio of the sideways force to the reaction force on the test wheel, which is reported as the 
SCRIM coefficient. SCRIM surveys are carried out annually on lane 1 of main carriageways, 
slip roads and roundabouts. Due to seasonal variations in skid resistance, pavements are 
measured at a different time of year and the SCRIM coefficient averaged over a three-year 
period to provide the Corrected SCRIM Co-efficient (CSC). 

 

 

Figure 2-2: Test wheel within the SCRIM survey vehicle 

2.3 Measurement of structural condition (deflection) 

Pavement structural condition assesses its ability to support vehicle loads. On the SRN the 
overall structural condition is determined by measuring the deflection of the pavement 
under load, using both continuous measurements carried out at traffic speed, and devices 
that work statically or at low speed within road closures. 
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Network level assessment of structural condition is undertaken on the SRN under the TRASS 
(Traffic-speed Structural Survey) survey using the SATTS device (which is also referred to as 
the TSD, Traffic-speed Deflectometer). The device measures pavement deflection velocity 
using laser sensors mounted under an HGV. The data is processed after the survey to 
convert the measurements into a set of Network Structural Condition (NSC) categories for 
each 100m length of the network. Further data is collected at the scheme, or project, level 
using the Deflectograph (slow speed device) and Falling Weight Deflectometer (static 
device) to provide further insights into the structural condition and to design treatments. 

For some types of pavement construction, the visual condition data (cracking) provided by 
the TRACS survey can be in indicator of deterioration in the structural condition. 

2.4 Further sources of data 

Further sources of information are also used to support condition assessment, for example: 

• Traffic: Traffic data is collected on the SRN by the MIDAS sensor network and 
manually by the Department for Transport using traffic counts.  

• Collision data: Records of collisions that have occurred on the network provide an 
important source of data when assessing the risks of particular sites. The STATS19 
Road Collision data is published bi-annually, providing a database of all road traffic 
casualty collisions reported to UK police. Data is available for the past five years. This 
includes the location and time of the incident, number of vehicles and casualties, 
road class, function and environment and contributing factors such as weather 
(Figure 2-3). 

 

Figure 2-3: STATS19 record sheet 

• Construction: Construction records include the pavement material, the date the 
material was laid and the thickness for each layer of the pavement. 

• Flood events: the Highways Agency Drainage Data Management System (HADDMS) 
contains records on all reported flooding events occurring on the SRN. The frequency 
of these events may accelerate pavement degradation. 
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• Treatments: records of previous minor treatments such as patching and major 
treatments such as resurfacing can support decisions on future maintenance needs. 

2.5 Use of current data in asset condition assessment 

There are many applications of condition data in the management of asset condition, of 
which the following are of relevance to this work: 

Reporting network level condition. KPI3.1 quantifies the percentage of the pavement asset 
considered to be in “good condition”. This network-level pavement condition indicator is 
calculated using data from TRACS and SCRIM surveys. Standards CS 230 (National Highways, 
2022) and CS 228 (Highways England, 2021) define four condition categories for the SRN 
based on the ride quality, rutting and skid resistance present on each 100m length of the 
network. The indicator reports the percentage of lengths falling into categories 3 or 4. 

Determining interventions to restore skid resistance (safety). Standard CS 228, Skid 
Resistance describes the process for collecting, analysing and acting on SCRIM skid 
resistance survey data. The skid resistance requirements for each length of the network are 
established by setting a site category (related to the likelihood of frequent or hard braking 
on this length) and investigatory level (the extent of skid resistance required on this length). 
Under guidance from CS 228, the site category is established by assessing the pavement 
usage, geometry and local knowledge available to the assessor. Where a SCRIM survey 
returns a measurement value below this investigatory level for any length an investigation 
will begin which will determine whether any action is required (e.g. to improve its skid 
resistance). Note: a summary of site category definitions is provided in Table 5 in section 7.  

Determining interventions to restore structural and functional condition. CS 230 Pavement 
Assessment Procedure describes three types of treatment that may be applied on any 
length to restore pavement condition where the survey identifies deterioration in the 
structural or functional condition. A Technically Simple Scheme may be carried out with 
limited approvals where there are no structural defects present, and all defects are confined 
to the surface layer (i.e. functional deterioration). For this treatment only the surface layer 
needs to be renewed. A scheme is considered Technically Complex where structural damage 
is present within the pavement, requiring reconstruction and greater design oversight. 
Structural defects are inferred from TRASS structural condition data, and rut depth 
measurements from TRACS surveys. 

In addition to the above planned/programmed maintenance interventions, the data from 
routine visual condition surveys is used to support decisions on maintenance need, in 
particular the reactive maintenance required to repair defects which develop rapidly, such 
as potholes.  
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3 Crowdsourced data 

3.1 What is crowdsourced data? 

Data is crowdsourced if it is collected from a wide range of participants interacting with or 
assessing a system. There is growing interest in crowdsourcing data for measuring road 
condition because of the potential benefits to the Road Authority, for example: 

• Crowdsourced data may have lower cost than data collected using dedicated survey 
activities (although this will depend on the frequency and coverage of the 
crowdsourced data). 

• For some applications (e.g. assessing risk) the data might contain information that 
cannot be provided using traditional methods (as it is collected by users interacting 
with the pavement rather than using models derived from survey measurements). 

•  Crowdsourced data may provide more frequent insights into condition and provide 
a more robust method to track changes in condition than traditional annual surveys. 

Crowdsourced pavement data can be collected through a variety of means, which include: 

• User reporting 

• Connected devices, such as dash cams 

• Smart phones 

• Vehicle telemetry, form connected vehicles or fleet monitoring systems 

However, crowdsourced data has some inherent disadvantages compared to traditional 
sources of road condition data. Because crowdsourced data is collected from a large 
number of independent sources, it is not feasible to calibrate and validate each individual 
member of the crowd – creating uncertainty around the accuracy and repeatability of 
metrics derived from crowdsourced data. Although it is believed that, with the collection of 
a sufficient quantity of data, the inaccuracies present within individual members of the 
crowd will average out, this cannot be assumed, as there may not be sufficient data or the 
inaccuracies may be biased in some way amongst the whole crowd. There are also concerns 
around the coverage of data required to create condition metrics on all roads. For example, 
the density of crowdsourced data on low trafficked roads will be lower. 

3.2 Types of crowdsourced data within this study 

This study considers two sources of data – vehicle telemetry data and mobile phone data. 

• Vehicle telemetry data can be collected from sensors installed within the vehicle by 
the manufacturer as part of the standard functionality of the vehicle, or sensors that 
have been retro fitted, for example for fleet monitoring purposes. This data may be 
routinely collected by manufacturers of connected vehicles1, or collected by fleet 
managers as part of their operational activities. 

 

1 I.e. each vehicle is connected to the collector of the data. This is typically provided through a SIM (3G, 4G, 5G) 

installed in the vehicle by the manufacturer. 
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• Mobile phone data is collected by installing an app onto a smartphone which collects 
data from the smartphone’s sensors and uploads it to the data collector. 

These sources are described further in Table 1. 

 

Table 1: Summary of crowdsourced data 

 Vehicle Telemetry Data Mobile Phone Data 

Sensors Sensors may include: GPS; accelerometers; 

driver action (steering wheel position, 

braking force etc.,); traction force applied 

at the wheel; wheel speeds and differences 

(e.g. for ABS activation); suspension 

position (compression); weather (e.g. 

windscreen wiper activity); and cameras 

(e.g. for parking or lane assistance). 

Mobile phone sensor data is typically 

limited to the GPS and accelerometer 

sensors within the phone. However, 

may include audio and camera input. 

Potential 

for road 

condition 

that may 

be inferred 

from the 

data  

The large number of sensors available from 

vehicle telemetry offers the potential for a 

wide variety of condition characteristics to 

be inferred from the data. E.g.: Suspension 

telemetry provides insights into 

longitudinal profile (roughness) and 

potholes; ABS sensors indicate where 

braking takes place, and where the demand 

for skid resistance exceeded the supply; 

recording driver actions provides insight 

into behaviour; vehicle imaging and sensing 

systems can assess the legibility of signs or 

quality of road markings. 

Accelerometer data can indicate 

potentially rough surfaces. High levels 

of deceleration of the vehicle 

identifies locations where braking 

demands occur, but not whether the 

skid resistance matched driver 

demand. 

A smartphone within a vehicle cannot 

separate driver intention, from 

vehicle behaviour. As such, 

smartphone data is limited to 

analyses of the combined 

vehicle:driver:pavement system. 

Issues / 

Limitations 

There are several issues specific to vehicle 

telemetry that create variances in the data 

collected: vehicle characteristics can vary 

considerably across different types and 

manufacturers of vehicle; sensor types and 

locations will differ; the condition of the 

vehicles will vary; the vehicles may have 

been modified in some way. 

If the phone is not secured within the 

vehicle, there may be false reports of 

acceleration as the device moves 

independently of the vehicle. Without 

any defined orientation of the 

smartphone relative to the vehicle, 

the accelerometer inputs may need 

to be calibrated each journey, and 

potentially mid journey if the 

smartphone is moved. 

Both sources of data have shared limitations listed below: 

• Low trafficked roads will have limited crowd coverage 

• Fleets have very limited coverage and potential biases 

• Driving lines / speed will vary 

• The sensors are not validated / calibrated 

• The condition / quality of sensors is not controlled or known 
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3.3 The crowdsourced data used in this study 

For this study TRL engaged with two providers of crowdsourced data, who provided 
anonymised data covering two regions of the country, as described in the following sections. 

3.3.1 Vehicle telemetry data (Region 1) 

Vehicle telemetry data was provided by a major vehicle manufacturer for a region of the 
country covering a circle extending approximately 200km from Manchester (Figure 3-1). The 
manufacturer provided access to an API that enabled data to be downloaded from their 
cloud database. Access was provided to data transmitted from all connected vehicles 
travelling in this region between 9th and 29th February 2024. The data covered all road types, 
both strategic and local. However, this study has considered only the data that was 
collected on strategic roads.  

 

 

Figure 3-1: Region 1, covered by vehicle telemetry data 

 

The data provided by the vehicle manufacturer was not “raw sensor” data. The vehicle 
telemetry data consisted of “events” that, it is assumed, were derived from the raw data by 
the manufacturer. No detail was provided on the methodology deployed to 
determine/identify an “event”. The event data contained in the vehicle telemetry dataset 
included: 

• ‘Slip’ events 

• Bumps & Potholes, including severity & wheel path 

• Weather events 

• Emergency braking, accidents, breakdowns and hazard lights 

Each event was accompanied by its geolocation and timestamp, with a total of 296,000 
events provided in the in the sample dataset (see further discussion of the content in 
Section 4.2). 
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It can be seen from the above that vehicle telemetry data covers two aspects of road 
condition. The bumps and potholes events are potentially associated with road functional 
condition, and the slip events are likely to be associated with safety. 

3.3.2 Mobile phone data (Region 2) 

Mobile phone data was provided by a major technology/data provider for a region of the 
country covering a circle extending approximately 60km, centred on the southwest of 
Greater London (Figure 3-2). For this study the manufacturer provided an example dataset 
in CSV format, but typically the data would be accessed via a web API. The data provided 
was that collected from all connected/participating mobile phones travelling in this region 
between 1st and 7th October 2023. Again, the data covered all road types, both strategic and 
local, with only the data collected on strategic roads considered in this study. 

 

 

Figure 3-2: Region 2, covered by mobile phone data 

 

The data provided was limited to the reporting of “deceleration events”, which have 
potential as an indicator of road safety. Although detail was not provided, these events 
appear to be associated with locations where the mobile phone has recorded high levels of 
deceleration, which may have arisen from heavy braking. The dataset included, for each 
event: 

• Geolocation (start and end locations) and timestamp (including the duration of the 
event) 

• Initial speed 

• Average deceleration, for any deceleration event greater than 7mph/s (3.2m/s2) 

• An estimate of the traffic volume in the location 

There were ~2,100 deceleration events within the sample dataset provided (see further 
discussion of the content in Section 4.2). It was deduced that this data would be associated 
with safety condition.  
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4 Approach to data collation, alignment and analysis 

4.1 Current data types 

4.1.1 Functional and safety condition data 

Given that the crowdsourced data was expected to provide insight into safety and function 
condition, current data on pavement functional and safety condition were obtained from 
National Highways Pavement Asset Management System (P-AMS), including: 

• Road surface condition from TRACS data, which for the purposes of this study 
focussed on the TRACS roughness (eLPV and Bump Index) parameters for the two 
regions. 

• Road safety condition from SCRIM, including Skid resistance from SCRIM data. In 
addition, the Skid risk site category and SCRIM investigatory levels were obtained for 
the two regions. 

The most recent survey data available for each lane of the road was obtained, for lengths 
where the P-AMS construction records did not indicate the pavement had been treated 
since the survey took place. This ensured that the data was representative of the current 
condition of the pavement. 

Pavement data stored on P-AMS is locationally referenced to a network defined in terms of 
section and chainage. A section is a defined length of road with a start and end point (with 
defined coordinates), and the chainage states the distance from the start of the section. 
Data was downloaded as 100m and 10m average values for each lane, with section and 
chainage. 

As discussed below, it was not possible to fit the crowdsourced data to a specific traffic lane. 
Therefore, to enable comparison between the crowdsourced and road condition data it was 
necessary to combine the road condition data across all lanes. The data was therefore 
aggregated to report the average, maximum and minimum value across all lanes. The data 
was also aggregated to report the maximum, minimum and average value per section. The 
per section data also included the percentage of each skid risk site category present within 
the section. 

4.1.2 Traffic data 

Traffic volumes are reported on the SRN on the WebTRIS web portal. Traffic data used in 
this study was collated from 2022, because a suitably formatted and aggregated dataset had 
been prepared from 2022 for use in a previous project. The data included road name and 
direction, and Average Daily Traffic over 24 hours, showing the total number of vehicles 
passing each measurement point in the carriageway over a full day. The dataset also 
included the number of hours each counting point was in service during the year, which was 
used to clean the dataset. Counting points that had a low number of operational hours were 
removed (this can occur where the traffic counting loops are broken). 
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As traffic counting sites are referenced only to their coordinates, it was necessary to allocate 
these to P-AMS section and chainage. The coordinates of the mid-point of the section were 
approximated by calculating the mid-point between the section start and end co-ordinates 
provided in P-AMS. The coordinates of each traffic counting point were matched to the 
closest section mid-point which shared the same road name and direction of travel. This is 
an imperfect method of matching the traffic data to sections – as the distance between 
counting point and section increases, so does the likelihood that a junction is present 
between the two, making the traffic count inaccurate. However, alternative methods would 
either involve complex analyses of the SRN network definition or manual interpretation, 
which were beyond the scope of this study. 

4.1.3 Collision data 

Collisions from STATS19 are reported in a similar way to crowdsourced event data. They are 
reported with the coordinates of a single point in space. This data was fitted to the SRN (P-
AMS network) so it could be compared with other NH data sources and the crowdsourced 
data, all of which was also fitted to the SRN (see below). Fitting of the STATS19 data 
followed broadly the same fitting procedure as used for fitting the crowdsourced data to the 
SRN, which is described below in Section 4.2.1 (noting that STATS19 events had a single 
location coordinate, whereas most of the crowdsourced data was provided with a series of 
coordinates). 

4.2 Crowdsourced data 

4.2.1 Functional and safety data 

Crowdsourced data was obtained from telemetry and mobile phone data providers as 
discussed in Section 3 above. The vehicle telemetry data was collected during a 20-day 
period in February 2024 and the deceleration data from the mobile phone source was 
collected during 7 days in October 2023. Table 2 provides a summary of the event data, by 
type. It can be seen that the vehicle telemetry data contained a higher number of events 
than the mobile phone data but, following fitting (see Section 4.2.2), the number occurring 
on the SRN was lower. Hence the mobile phone deceleration data formed the largest 
dataset of all the event types, both in terms of total count of events and events per km per 
hour. 

Crowdsourcing relies upon an event being experienced by the vehicle or mobile phone. 
Therefore, we may expect the rate of reporting to vary with traffic flow. Figure 4-1 shows 
how the rate of event recorded varied over the data collection period. There are clear peaks 
that occur during the daytime for all event types, the daytime being the busiest travel 
period. In the peaks which occur on weekdays, a smaller morning and evening peak can also 
be regularly seen. This matches the expected traffic flow. However, although there is 
variation between the peaks for each day in the plots in Figure 4-1, the overall trend in rate 
of events is constant. The only exception to this is there is a large peak in the number of slip 
events at the start of the data collection period. The reason for this is unknown. 
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Table 2: Summary of the coverage of the crowdsourced data types 

Data source Vehicle telemetry Vehicle telemetry Vehicle telemetry Mobile phone 

Cause Bump Pothole Slip Deceleration 

Month of data 
collection 

February 2024 February 2024 February 2024 October 2023 

Timespan of data 
collection (days)2 

20.1 20.1 20.1 6.9 

Total number of 
events 

11621 3818 27904 2158 

Number of events 
matched to the 
SRN 

443 276 672 1831 

Length of SRN 
covered (lane km) 

8785.6 8785.6 8785.6 424.0 

Events per km of 
SRN per hour3 

0.00251 0.00156 0.00381 0.02599 

 

4.2.2 Fitting to the P-AMS network 

As noted above, the crowdsourced data was provided as “events”. Typically, these included 
coordinates and information about the event itself. For the mobile phone deceleration 
events, three location coordinates were provided for each event (at the start of 
deceleration, the middle and the end of deceleration). For the vehicle telemetry data, all 
events had one set of coordinates. However, most of the vehicle telemetry data was also 
provided with a set of coordinates simply showing the vehicle path leading up to the event. 
The purpose of these is to help locate and contextualise the event. 

For this study it was necessary to match the events to their location on the network (as 
defined by P-AMS section and chainage). A fitting procedure was developed in which the 
location coordinates were compared to a line representation of the carriageway, in order to 
identify the section, chainage (the distance along that part/section of road) and direction of 
travel of the event. For most events on straightforward sections the fitting procedure was 
not complex. However, a more complex approach was required at roundabouts and 
junctions, particularly where roads were crossing over or under each other. Events that did 
not occur on the SRN were not fitted. 

 

 

2 The timespan of the data collection is not in whole days due to their being a delay between access to the 

relevant APIs being granted and the data collection commencing. 

3 Events per km of SRN per hour = Number of events matched to the SRN / (Length of SRN covered (lane km) * 

Timespan of data collection (days) * 24) 
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a) Bump 

 

b) Pothole 

 

c) Slip 

 

d) Deceleration 

Figure 4-1: The count of events per hour over the data collection periods 
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Whilst the fitting procedure enabled the crowdsourced data to be compared to current road 
condition data, it also helped improve the robustness of the analysis by ensuring the 
direction of travel and the correct road had been allocated to the event. This would not be 
the case if the analysis had simply clustered similar events using GIS tools (which could 
erroneously cluster events occurring on different roads). 

One limitation of the fitting method was that the lane of the crowdsourced event is not 
identified. This is a result of the expected (but not tested) accuracy limitations of the 
crowdsourced coordinate data and because the definition of the SRN used does not include 
the coordinates for each lane. For multiple lane roads (a large proportion of the SRN), there 
is an uncertainty as to which lane the crowdsourced data is from. This is a particular 
challenge when considering events such as a potholes, which will only occur in one lane. 

4.2.3 Aggregation and cleaning 

The fitting process enabled the crowdsourced event data to be reported in relation to 
section and chainage. Events were reported as both 10m and 100m “values” in the dataset. 
Aggregate metrics included counts of each type of event in each reporting length, and 
minimum, mean and maximum values for events that included numeric data. 

It was assumed that providers of the crowdsourced data had undertaken reliability checks 
on the delivered data, and therefore little further cleaning was undertaken. For one data 
provider, some events were flagged as invalid, so these were removed from the dataset 
prior to any analysis. 

4.2.4 Exploring the clustering of events in the crowdsourced dataset 

As discussed in Section 3, crowdsourcing relies on high numbers of participating “sources” 
(e.g. connected vehicles) to experience a defect or event. The data is anticipated to have 
low precision/accuracy for individual sources, but collation into clusters should improve 
confidence that any identified event is a true event that indicates potential deterioration in 
the condition. However, even with high numbers of vehicles passing a location where there 
is a potential defect, there is no guarantee that all vehicles will experience the defect. There 
are many reasons for this, including: 

• If there are multiple lanes and the defect is in a single lane, then only vehicles in that 
single lane will detect it. 

• If the feature is a potential hazard (e.g. a pothole), then drivers may change their 
driving line to avoid the feature and therefore the event will not be detected or 
reported. 

• The detection of a slip is likely to be dependent on the vehicle accelerating or 
decelerating (braking) in some way. Not all vehicles passing a location may be doing 
this or doing it in the same way. Therefore, only a subset of the vehicles passing this 
location may report a slip event. 

Unfortunately, the number of connected vehicles or mobile phones passing each location 
was not available from either data provider. This makes it impossible to determine the 
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proportion of the vehicles travelling past the location of event that reported an event at 
that location. This would be a useful metric to aid interpreting the data. 

To explore the behaviour of the basic clustering of events the geographical locations of the 
events were analysed using the DBSCAN clustering algorithm4. DBSCAN is a density-based 
algorithm which analyses clusters on the basis of the distance between individual points and 
the minimum number of points per cluster (Ester et al., 1996). Clusters identified using 
DBSCAN can therefore contain points which are more than the minimum distance apart, but 
they will be connected by a chain of other points which do satisfy the maximum distance 
criteria. For the analysis the distance between points was set to 30m 5 and the minimum 
number of points was set to four. As deceleration events contained several coordinates the 
end point was used. 

Note that this clustering investigation was based on the coordinate data (not section and 
chainage). After the DBSCAN algorithm had been applied, each cluster identified was 
checked to ensure that all events identified in the cluster came from vehicles travelling in 
the same direction and on roads of the same function. The latter check (roads of the same 
function) identified some invalid clusters on roundabouts over mainline sections. Where the 
checks were not satisfied the cluster was either split or removed, depending on whether the 
new clusters would still contain greater than the minimum number of reported events (4 in 
this case). 

Figure 4-2 shows examples of clusters that were identified in the analysis. Here individual 
events are shown as points on a map background. Many events can be seen, with the events 
considered to form part of a cluster presented in yellow. The importance of “road context” 
becomes apparent in these plots. For example, a simple geographical clustering analysis 
could incorrectly allocate mainline deceleration events to the same cluster as the 
roundabout deceleration events in the right of Figure 4-2, which could result in over-
estimation of the risks present. 

A summary of the clustering results is shown in Table 3. The event for which the largest 
percentage of events also fell into a cluster is bump, followed by pothole. It may be that 
bumps and potholes, which are point features, are more likely to be successfully identified 
as a cluster because they will be reported in similar locations by each passing device, whilst 
deceleration or slip events are less precise in location. Alternatively, it may be that the data 
is indicative of high numbers of widely dispersed braking events, with only a small 
proportion occurring at similar locations. 

Bump events also have largest number of events per cluster, followed by slip (Figure 4-3). 
Note that bump, pothole and slip were all reported by the same fleet of vehicles over the 
same time period. The cause of the differing sizes of clusters is unclear. It may be that 
bumps are more likely to be detected than other event causes due to the ability of this to be 
detected by the vehicle telemetry data. 

 

4 The DBSCAN implementation used was from the Python library scikit-learn (Pedregosa et al., 2011). 

5 30m was selected based on the estimated accuracy of the vehicle/phone location measurement system 

(GNSS). 
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a) Slip, 1 cluster visible 

 

b) Deceleration, 3 clusters visible 

Figure 4-2: Visualisation of example clusters 

 

The length of clusters was estimated by calculating the minimum bounding rectangle for the 
points in each cluster and taking the longest side as the cluster length. The distribution of 
lengths is shown in Figure 4-4. The cluster lengths for bump and pothole are similar and the 
smallest. This may be expected because they are point features. The length of these clusters 
is probably indicative of the error in the position measurement. Slip and deceleration occur 
over lengths, with the cluster length perhaps indicative of both the deceleration length and 
the position error. 

 

Table 3: The proportion and size of clusters for each type of crowdsourced data 

Cause Bump Pothole Slip Deceleration 

Data source Vehicle telemetry Vehicle telemetry Vehicle telemetry Mobile phone 

Number of clusters 34 15 26 32 

Count of events 
not allocated to a 
cluster 

195 188 506 1993 

Estimated total 
number of event 
sites (sum of 
above rows) 

229 203 532 2025 

Total number of 
events 

443 276 672 2158 

Percentage of 
total number of 
events which are 
in a cluster 

55% 31% 25% 8% 
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Figure 4-3: Box plots of the count of events per cluster 

 

 

Figure 4-4: Box plots of the estimated length of the clusters 

 

4.3 Approach to analysis 

As noted in Section 1, the goal of this work has been to explore how the data provided from 
crowdsourcing could be applied to better understand or manage the condition of the SRN. 
The analysis was therefore centred on posing questions regarding the use of the data in 
specific applications, and then undertaking analysis to determine whether there was 
evidence that the available dataset could be used to answer that question. 

The questions were separated into four areas, as follows: 

• As the telemetry dataset provided event data that relates to the experience of road 
roughness (bump and pothole events, including severity), can telemetry data be 
used to assess functional condition? This is presented in Section 5. The analysis 
focusses on the comparison between TRACS functionality (roughness) data and the 
bump events provided in the telemetry data in Region 1. 

• As the telemetry dataset also provided event data that monitored the requirement 
for the connected vehicles to decelerate or stop on the network (slip and 
deceleration events), can telemetry data be used to assess safety condition? This is 
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presented in Section 6. The analysis focusses on the comparison between SCRIM 
safety (friction and supporting data such as site category) data and the slip events 
provided in the telemetry data in Region 1. The data is explored from a number of 
perspectives – the potential to replace SCRIM data, the potential to support the 
identification / assessment of potential high-risk individual sites, the potential to 
support more robust / more evidence-based establishment of Site Categories, and 
the potential to identify sites where there may be higher risks of collisions occurring. 

• As the mobile phone dataset provided data the that focussed on vehicle deceleration 
(deceleration events for any deceleration greater than 3.2m/s2), can mobile phone 
data be used to assess safety condition? This is presented in Section 7. The focus of 
the analysis is broadly similar to that applied to the telemetry data. Hence 
comparison is undertaken between SCRIM safety (friction and supporting data such 
as site category) data and the deceleration events provided in the mobile phone data 
in Region 2. The data is explored to determine whether the mobile phone data can 
support the identification / assessment of potential high-risk individual sites, and to 
identify sites where there may be higher risks of collisions occurring. 

• Finally, robust application of crowdsourced condition data will require sources of 
data that provide adequate coverage of the network. Some implications of the 
coverage for specific applications are discussed in Section 8. 
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5 Application of vehicle telemetry crowdsourced data to assess 
functional condition 

5.1 Network level assessment of bumpiness 

Question: TRACS data provides a measure called the Bump Index that reports the 
location of bumps. Can the telemetry data provide network-level assessment of 
bumpiness? 

The experience of road users can be adversely affected by the presence of bumps caused by 
defects such as potholes, poor drainage covers, failed reinstatements etc. On the SRN 
bumps are reported using the TRACS Bump Index. The measure was developed via 
comparison with data from user experience studies, aiming to provide a general assessment 
of the extent to which a feature identified within the measured profile will affect user 
experience. However, TRACS provides a snapshot of the condition of the pavement on a 
single day each year. Bump defects can form rapidly, and hence bump data may be 
inaccurate within weeks after the survey date. Crowdsourcing data can be collected year-
round, to provide an up-to-date representation of the pavement condition. Also, as it 
reflects the actual vehicle response, it may better reflect real world bump experience. The 
relationship between vehicle telemetry bump data and the TRACS Bump Index was 
therefore explored to understand how crowdsourced could complement data provided by 
the Bump Index. 

The 100m lengths where the telemetry crowdsourced data reported at least one bump or 
pothole was used as the basis to filter the TRACS Bump Index dataset into two datasets – 
lengths where the crowdsourced data reported a bump, and the whole network. The 
distributions are shown in the left of Figure 5-1. It can be seen that higher values of Bump 
Index are reported on a greater proportion of the dataset in which crowdsourced data 
reported a bump. This analysis was repeated for the TRACS 3m eLPV measurement, which 
indicates the presence of short longitudinal profile deviations, shown in the right of 
Figure 5-1. Again, higher values of 3m eLPV are reported on a greater proportion of the 
dataset in which crowdsourced data reported a bump. These comparisons suggest that the 
crowdsourced data is indicating the presence of rougher roads and bump-like features that 
are also reported by TRACS, and indicates that the crowdsourced data may provide the 
ability to characterise roughness at the network level. 

Although there appears to be a broad indication within the distributions that the 
crowdsourced bump measures are reflecting lengths that TRACS considers to be bumpy, a 
direct comparison between the TRACS and crowdsourced intensities does not show a strong 
relationship. Figure 5-2 shows the relationship between the Bump Index and the magnitude 
of the crowdsourced bump. To obtain this, the dataset was divided into six subsets 
corresponding the 100m lengths in which the crowdsourced data reported a bump 
magnitude of 1 to 6. The average TRACS Bump Index was then calculated for each subset. 
This shows no overall relationship between the TRACS Bump Index and the crowdsourced 
bump magnitude. This analysis was then repeated, in this case determining the average 
Bump Index value over lengths reported by the crowdsourced pothole data in the range 1-6. 
This shows a relationship, but the reverse of that which would be expected. We are not able 
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to explain this behaviour. If the crowdsourced data is reporting rapidly developing and/or 
the worst bumps (potholes) it may be that TRACS has not identified these because they 
were either not present when the survey took place, or that local treatments have taken 
place and they were repaired before the survey took place. Alternatively, the TRACS Bump 
Index may have failed to identify bumps which do cause bumpiness events in real vehicles – 
or vice versa. 

 

  

Figure 5-1: Comparison of Bump Index distributions (left) and 3meLPV distributions (right) 
for the whole SRN and the SRN where crowdsourced data reported a bump 

 

  

Figure 5-2: Relationship between crowdsourced bump magnitude (left) and pothole 
magnitude (right) and the average Bump Index 

  



   

 

 

Final 26 ACA109 

5.2 Identifying and tracking specific bumps / potholes 

Question: Can telemetry provide information to identify and track the development of 
specific bumps / potholes?  

Although no consistent relationship was found above between the bump / pothole score 
and TRACS derived measurements on a network level, examination of the data on specific 
sites shows that is possible to use the telemetry data to identify specific features. For 
example on the A14 we were able to track the development of a pothole, as shown in 
Figure 5-3. The bump values reported over a 20 day period were tracked manually in the 
data, as shown in Figure 5-4. The National Highways database marked this feature as 
repaired approximately two weeks after the final date reported in the telemetry dataset. 
This suggests that the vehicle telemetry data is identifying significant features, despite a lack 
of consistent correlation with the TRACS measurements. Further study would be required to 
validate and make effective use of this data source. 

 

 

Figure 5-3: Location of pothole on the A14, around the exit of a layby 

 

 

Figure 5-4: Evolution of pothole scores over time from start till end of dataset timespan 
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6 Application of vehicle telemetry crowdsourced data to assess 
safety condition 

6.1 Telemetry data for the measurement of skid resistance 

Question: Can locations where the telemetry reports the road is slippery provide insight 
into the requirement for skid resistance related maintenance? 

The vehicle telemetry data reports a ‘slip’ event. The method deployed by the telemetry 
data supplier to determine this was not provided, but it is assumed that the event is 
intended to indicate a situation where the skid resistance was, to some extent, low, and 
when the vehicle was braking there was evidence of slip (ABS activation). However, no 
information is provided regarding the braking force applied and duration (and hence the 
demand for skid resistance). To explore the behaviour of this data, the skid Site Categories 
for the locations where slip events occurred were determined. The distribution of slip 
events by Site Category is shown in Figure 6-1. The figure also shows the distribution of site 
categories for the whole network covered by the telemetry data (Region 1). This shows that 
the proportion of slip events reported to occur on sites categorised as Q and R6 (see also 
Table 5) far exceeded the proportion to which these site categories are present on the road 
network, suggesting that drivers were significantly more likely to experience slip on sites 
categorised as Q and R. 

 

 

Figure 6-1: Comparison of overall distribution of highway Site Categories compared to the 
distribution of slip events by Site Category 

 

6 As defined in standard CS 228 (Highways England, 2021). Q: approaches to and across minor and major 

junctions and approaches to roundabouts. R: Roundabouts 
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To explore the data further Figure 6-2 shows the distribution of SCRIM Difference values for 
the (Region 1) network. Figure 6-2 also shows the distribution SCRIM Difference values for 
those lengths on which a slip event was reported. Lengths on which a slip event occurred 
are much more likely to have negative SCRIM Difference compared in comparison to overall 
network. 

 

 

Figure 6-2: Cumulative frequency of SCRIM difference values for whole dataset compared 
with pavements which have an associated slip event 

 

Although the distributions suggest that slip events may be associated with greater SCRIM 
difference, direct comparison between these datasets does not show a strong relationship. 
Figure 6-3 directly compares the average Corrected SCRIM Coefficient values, and SCRIM 
difference values for each section with the frequency at which slip events occurred in that 
section. These scatter plots show no appreciable relationship with either CSC or SCRIM 
Difference. 
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Figure 6-3: Relationship between Slip events and average Corrected SCRIM Coefficient 
(left) and SCRIM difference (right), normalised by section length 

The lack of a direct relationship is, perhaps, not surprising as the interaction of driver 
behaviour, braking demand and friction supply is complex. In addition, the dataset studied 
in this work covered a relatively short telemetry measurement period, which may have been 
insufficient (insufficient vehicle passes) to build up a robust assessment of the friction. The 
slip events data available to this study therefore does not appear to provide a general/direct 
indicator of skid resistance. However, this does not mean that the does not contain valid 
information regarding hard braking events and their significance for providing adequate 
levels of skid resistance, as discussed further below.  
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6.2 Identifying higher risk sites – case studies 

Question: Can the data be used to identify specific locations that may require higher 
levels of skid resistance, which are not clearly identified using current methods. 

To establish if higher risk sites could be identified using crowdsourced data, the vehicle 
telemetry data was reviewed to locate clusters of slip events. These are discussed as “case 
study” locations. 

6.2.1 Case study example on M5 mainline northbound, Birmingham 

Clustering of slip (i.e. hard braking) events is not typically expected to occur on main 
carriageways. On these road types heavy braking will often arise as a result of the behaviour 
of other road users, which will not be confined to any given location, unlike braking for a 
junction, which is in a fixed position. However, two clusters of slip events were reported 
over two days at a similar location around a bridge carrying traffic over a small river, the 
clusters of events are shown in Figure 6-4. The vehicle telemetry data shows, on average, 1 
slip event per twenty sections of road, making this cluster very unlikely to occur through 
chance alone. The pavement at this location has a positive SCRIM difference value, 
suggesting that it is unlikely that the slip events are only due to low skid resistance, and that 
they represent hard braking events that lead to slip. 

 

 

Figure 6-4: Location of slip events on the M5 clustered around an overbridge 

 

Finding a definitive explanation for the braking events is not possible; however, investigation 
of the site found four sets of stairs allowing access to the main carriageway from each side 
corner of the bridge. One such set of stairs is shown in Figure 6-5. A potential explanation for 
the deceleration could be maintenance operatives accessing the carriageway to inspect the 
bridge, or trespassers using the bridge to cross the river. 
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Figure 6-5: View from the M5 carriageway showing top of bridge/embankment access stairs 

 

6.2.2 Case study example on the A46, north of Syston 

Table 4 shows the SCRIM Difference values for a section of pavement on the A46 which 
shows a range SCRIM difference values, some less than zero (which suggests a lower level of 
skid resistance). The site may therefore be subject to a site investigation to determine any 
requirement for remedial action. Visualisation of the telemetry data (Figure 6-6) shows the 
occurrence of slip events on this section. Events can clearly be seen clustering around a bus 
stop. The presence of this bus stop may be causing some drivers to brake hard. The 
crowdsourced slip data could provide evidence to support action at this location. 

 

Table 4: SCRIM Difference measurements on pavement section on the A46 showing low 
and deficient values 

Start 
Chainage 

End 
Chainage 

Site 
Definition 

SCRIM 
Difference 

0 63 B -0.04 

63 163 B 0.03 

163 263 B 0.035 

263 314 B 0.027 

314 414 B 0.024 

414 474 B 0.028 

474 526 B 0.029 

526 607 B -0.038 

607 677 B 0.049 

677 777 B -0.033 

777 790 B -0.048 

790 865 B 0.101 

865 916 B 0.058 
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Figure 6-6: Cluster of slip events around a bus stop on the A46 north of Syston 

 

 

Figure 6-7: Photo of the location of the cluster of slip events near a bus stop and footpath 
crossing on the A46 north of Syston 

 

6.2.3 Case study example on the A45 eastbound, Wellingborough 

On this mainline section (Figure 6-8) the pavement has an average SCRIM difference of -
0.0516, which suggests that it may require investigation. The section has two lanes, with a 
slip road merging into them. This is a point of conflict with high levels of traffic that may 
suggest that the site has a higher level of risk and hence intervention may be required. 
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However, there are no slip events on this section, suggesting that hard braking is not 
occurring and the risk may be low. 

 

 

Figure 6-8: Section of east bound main carriageway on the A45 

 

6.3 Identifying higher risk sites – treatment and categorisation 

Question: What approach could be used to apply crowdsourced data more objectively to 
support decisions on treatments? 

As has been observed in previous sections, it is likely that the point events provided by the 
crowdsourced data will accumulate, or cluster, in locations where there are defects present. 
To make use of this data in condition assessment and asset management it will be necessary 
to identify and locate these clusters. In this section we consider the use of a Kernel Density 
Estimator to better understand the locations of point events reported in crowdsourced 
data. The kernel density estimator (KDE) can be used to estimate the probability density 
function of a continuous variable using point data. In a KDE, a kernel function, typically a 
symmetric and smooth function such as the normal distribution, is placed over each data 
point. The estimator then calculates the density at any point in the distribution by summing 
the contributions of all kernels. The degree of smoothness is controlled by a bandwidth 
parameter, which determines the width of each kernel (SciKit - Learn, 2024). The KDE could 
be used, for example, to locate the onset and development of potholes by identifying 
increasing probability of bump events occurring at a location, or to identify locations 
containing higher risk slippery roads as slip events cluster. 

In this study we have applied the KDE to convert the point slip event data into a probability 
density function of slip likelihood. To do this it is necessary to model the distribution of 
braking distances. However, this was not available in the telemetry data as only point values 
were provided. Therefore, the distribution of braking distances was estimated using the 
smartphone deceleration event data (which included information on the start and end 
positions of braking events). Figure 6-9 shows the distribution of deceleration lengths from 
this dataset, displaying an approximately normal distribution. This was used as justification 
for selection of a gaussian Kernel function. 
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Figure 6-9: Approximately normal distribution of distance travelled under braking 

 

The smartphone deceleration data indicated that the variance of deceleration length was 
~32m for A roads. This was used to convert the slip point data into a probability density 
function for event location. This is shown tor the approach to the bus stop on the A46 north 
of Syston (used in the case study of Section 6.2.2) in Figure 6-10. The plot shows a high 
probability density for slip events immediately before the bus stop. There is also a lower 
peak after the bus stop, which may be a result of drivers braking as vehicles leave the bus 
stop. Whilst the case study discussed above identified (via manual visual interpretation) a 
potential higher-risk location at the cluster of slip events, the KDE approach can define, 
objectively, a length over which there is higher risk, which could assist the road authority 
when deciding where to apply treatments. 

 

Figure 6-10: Kernel Density Estimator plot of Slip events approaching and beyond a bus 
stop on the A46 north of Syston 
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The KDE method may also be applied when reviewing skid site categories. For example, 
Figure 6-11 shows a slip road leaving the A45, featuring three site categories: the first 
category is B, representing a featureless carriageway; the second is category G1 
representing a road with a steep downhill gradient; and the final category is Q representing 
a junction approach where vehicles will routinely come to a stop. The complexity of this slip 
road creates challenges in setting Site Categories. Drivers may need to brake earlier in this 
slip road due to the steep gradient, and there is a possibility of a queue forming, with and 
drivers potentially coming to a stop several hundred meters before the junction. 

Figure 6-12 shows the KDE plot of the events on this slip road. The KDE plot shows that the 
events align approximately with the Site Categories, with increasing braking probability as 
the vehicles approach the junction. This plot implies that the Site Categories have been 
correctly selected and account for driver behaviour at the junction (noting that the volume 
of data is low and that with further slip events the distribution could shift). 

As the KDE probability densities are normalised, it is difficult to compare sites with different 
numbers of slip events. However, they can be converted to pseudo frequency by multiplying 
the PDF by the total event count. Two case studies (the A45 slip road and A46 bus stop at 
Syston discussed above) are shown in Figure 6-13. It can be seen that there is a higher peak 
in the frequency of slip events behind the bus stop on the Syston site compared to the Q 
site category on the junction approach at the end of the A45 slip road. Despite this, the road 
behind the A46 bus stop is site category B (with a less demanding SCRIM Investigatory 
Level). The crowdsourced data suggests this may not be appropriate. 

 

Figure 6-11: The site definitions on a slip road leaving the A45 
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Figure 6-12: Kernel Density Estimator plot of slip events approaching on a slip road leaving 
the A45 

 

  

Figure 6-13: Kernel Density Estimator plot of slip events approaching and beyond a bus 
stop on the A46 (left) and A45 (right) converted to show pseudo frequency 

 

As noted above, the KDE approach could also be applied to understand the development of 
clusters of other point data provided by crowdsourcing data, such as pothole or bump 
events relating to functional condition. This would provide an objective tool to bring the 
developing pothole to the attention of the maintaining engineer. It would also assist in 
maintaining records of the locations of potholes in the asset database, so that lengths in 
which higher numbers of potholes have developed can be monitored. This information is of 
use when making decisions on longer term treatments. 

6.4 Is there a relationship between crowdsourced telemetry data and 
collision risk? 

Question: Is there potential to use telemetry data to identify sites with higher risk of 
collisions occurring? 

Collision records form part of the risk assessment process when determining the skid 
resistance requirements for locations on the network. Collisions occur rarely, and therefore 
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for any given location that may be at risk of a collision occurring, this may not have yet 
occurred. Telemetry data has a higher density of events, which could be considered “near 
misses”. If there is a relationship between the rate of events and ultimate rate of collisions, 
telemetry could be used as a proxy for collision records when assessing risk. 

To investigate this, the relationship between slip events and STATS19 collisions was 
evaluated. All available slip events and STATS19 collisions from 2018 to 2023 were used in 
this analysis. However, there is a large imbalance between the number of STATS19 collisions 
(19,743) and the total number of slip events (672), which produced an unbalanced dataset. 

The left of Figure 6-14 plots the count of collisions reported in the STATS19 data against the 
number of slip events reported per section. Note that the numbers of events (STATS19 or 
slip) are reported as whole numbers, and therefore there are several overlapping points in 
the left plot. The colour bar shows the count of these overlapping points. To see if there is 
any relationship in sections with a non-zero count of slip events, sections with zero slip 
events (which is most of the dataset) were excluded from the left plot of Figure 6-14. The fit 
of a linear regression line, as shown in the plot shows poor correlation. There is no clear 
relationship between the slip events and collisions for this subset of the dataset. 

The right plot in Figure 6-14 shows an overview of the dataset. It shows the count of 
sections which have specific ranges of STATS19 collisions and slip events. These ranges are 
based approximately on the quartiles of STATS19 collisions and slip events respectively. 
However, due to the imbalance of this dataset, the “quartiles” are not close to the true 
quartiles, but instead are chosen to show the range of values in the data. If there was a 
strong correlation between the number of STATS19 collisions and slip events, then it would 
be expected that the sections with the lowest quartile of number of STATS19 collisions 
would also be the sections with lowest quartile number of slip events. This pattern would 
continue for the other quartiles, so the diagonal from bottom left to top right would contain 
most of the sections. This is not what is shown in the right plot of Figure 6-14, and instead 
no strong correlation is shown. 

It appears that the quantity of events present in the telemetry dataset is insufficient to 
conclude that there is a relationship between the slip events and STATS19 collisions across 
this dataset. It must be noted that the dataset covered a very short reporting period and 
there may be a stronger relationship obtained for data collected over a longer assessment 
period. 
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Scatter plot and liner regression line of best fit where sections 
with zero slip events have been excluded from the plot and 

regression calculation. Due to many points in the scatter plot 
being plotted at exactly the same location, the points have been 

given a colour scale to show the count of overlapping points. 

 

Histogram with bins based on approximate 
quartiles, where sections with zero slip events 

have been included in the plot. 

Figure 6-14: Plots of the total number of collisions from STATS19 from 2018 to 2023 and 
slip events per section 
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7 Application of mobile phone crowdsourced data to 
understand safety condition 

7.1 Relationship with SCRIM category and investigatory level 

Question: Current policy establishes requirements for skid resistance in terms of the 
demand and risks presented by specific section of road. Does deceleration data from 
mobile phones provide any insight? 

Currently, the required skid resistance (the investigatory level) for a length of road is set 
based upon its function and geometry. These are summarised in Table 5. The requirements 
are typically specified in terms of a range of skid resistance, from which engineers select an 
investigatory level appropriate to their understanding of risk on the site. 

 

Table 5: SCRIM site categories and investigatory levels (Highways England, 2021) 

Site 
category 

Definition Investigatory level for skid 
resistance 

Low risk site Standard site 

A Motorway 0.30 0.35 

B Non-event carriageway with one-way traffic 0.30 0.35, 0.40 

C Non-event carriageway with two-way traffic 0.35 0.40, 0.45 

Q Approaches to and across minor and major junctions, 
approaches to roundabouts and traffic signals 

N/A 0.45, 0.50, 0.55 

K Approaches to pedestrian crossings and other high-risk 
situations 

N/A 0.50, 0.55 

R Roundabout N/A 0.45, 0.50 

G1 Gradient 5-10%, longer than 50 m N/A 0.45, 0.50 

G2 Gradient >10%, longer than 50 m 0.45 0.50, 0.55 

S1 Bend radius <500 m – carriageway with one-way traffic N/A 0.45, 0.50 

S2 Bend radius <500 m – carriageway with two-way traffic 0.45 0.50, 0.55 

 

On the SRN P-AMS sections can be divided into subsections which have different site 
categories (and hence investigatory levels). Therefore, to undertake this analysis the 
network was divided into lengths as defined by the P-AMS section and the site category 
(and investigatory level) in the section (to obtain “site category sections”). The count of 
deceleration events within each “site category section” was then normalised by dividing by 
the length of that “section”. Note that this did not take the number of lanes in the “section” 
into account. Box plots of the distributions of deceleration events per m by site category 
and by investigatory level are shown in Figure 7-1. Tables of the numbers of counts of site 
category (or investigatory level) “sections” are also included to aid interpretation. It can be 
seen that: 
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• For site category, the categories with high upper quartiles of deceleration events per 
metre reported in the mobile phone data are Q, K and R. As may be inferred from 
the definitions provided in Table 5, vehicle stopping is likely to take place in these 
categories of site. The greater number of deceleration events reported by the mobile 
phone data is therefore consistent with the site categorisation of these sections 
established by the skid policy. 

• When considering the distribution of deceleration events per metre by investigatory 
level, most of the distributions are similar except for the highest, 0.55. There is a 
smaller number of “sections” in the distribution of deceleration events per metre for 
this investigatory level. However, the mobile phone dataset does suggest that the 
lengths for which higher investigatory levels have been set do experience a greater 
proportion of harsh barking events. Hence deceleration is occurring where it is 
expected that there would be more demand for friction. 

  

Site category Count of “sections” 

A 182 

B 290 

C 15 

Q 74 

K 11 

R 2 

G1 8 

G2 0 

S1 48 

S2 3 
 

Investigatory level Count of “sections” 

0.30 18 

0.35 434 

0.40 30 

0.45 75 

0.50 50 

0.55 26 
 

a) Site category b) Investigatory level 

Figure 7-1: Box plots of the deceleration events and respective counts 
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7.2 Identifying higher risk sites – case study 

Question: Can the data be used to identify specific locations that may require higher 
levels of skid resistance, which are not clearly identified using current methods? 

As for the telemetry data, we have investigated whether higher risk sites could be identified 
using mobile phone crowdsourced data. To conduct this study, sections in Region 2 which 
contained lengths defined as junction approaches, Q, or roundabouts, R, were identified – 
there were 75 such sections. Deceleration events and STATS19 collisions (from 2018 to 
2023) occurring in these sections were also investigated to identify those containing the 
highest number of deceleration events or STATS19 collisions. These are listed in rank order 
in Table 6. It can be seen that several of the sections reported to contain a high number of 
deceleration events also have a high occurrence of STATS19 collisions. The five sites with the 
highest number of deceleration events are shown in Figure 7-2. Section 3600M23/207 
(Figure 7-2a) has a high number of deceleration events but only one STATS19 collision. 
However, the next four deceleration sections all feature in the top seven collision sections. 

The data suggest that cluster-based analysis of deceleration events could be useful for the 
identification of higher risk sites. Further insight may be provided through more in-depth 
investigation of current sites where there is both a strong and a weak relationship. For 
example, section 3600M23/207 appears to have sustained a higher number of deceleration 
events with a lower proportion of collisions. Is this due to pavement design or condition, 
driver behaviour or another factor? Also, we note that the clustering approach itself can 
affect the analysis when primarily performing analysis based on P-AMS sections. The 
junction between 3600A3/308 and roundabout 3600A3/195 shown in Figure 7-2b has a high 
number of collisions, but these are separated across two sections, but this is effectively one 
location with a high number of collisions. This suggests that breaking the data on such an 
arbitrary basis could limit the analysis. 

Table 6: The 10 sections with the highest number of deceleration events or STATS19 
collisions 

Section label Rank Number of 
deceleration 
events 

 Section label Rank Number of 
STATS19 collisions 

3600A3/195 1 9  3600A3/195 1 12 

3600A3/308 2 7  3600M3/506 2 8 

3600M23/207 2 7  3600A30/181 3 7 

3600M3/479 3 5  3600A3/308 4 6 

3600A3/143 4 3  3600M25/367 4 6 

3600M25/408 4 3  3600M25/337 4 6 

3600M3/110 4 3  3600A30/149 5 5 

3600A3/148 5 2  3600M25/479 6 4 

3600A3/317 5 2  3600A3/355 6 4 

3600A3/392 5 2  3600M3/479 7 3 
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a)  

b)  

c)  

Figure 7-2: The five junction/roundabout sections with the highest number of deceleration 
events 

3600M25/408 

Rank: =4 
3600A3/308 

Rank: =2 

3600A3/195 

Rank: 1 

3600M3/479 

Rank: 3 

3600M23/207 

Rank: =2 

Deceleration event 

STATS19 collision 
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7.3 Is there a relationship between mobile phone crowdsourced data and 
collision records? 

Question: Is there potential to use mobile phone data to identify sites with higher risk of 
collisions occurring? 

Because collisions occur rarely, using collision data to assess risk may delay the 
identification of higher risk sites. The higher density of events provided by crowdsourcing 
(“near misses”) could provide this indication earlier. This question was also asked of the 
telemetry data in Section 6.4. As for the above, this investigation has related crowdsourced 
events – in this case the mobile phone deceleration events – to STATS19 collisions. 

Figure 7-3 plots the count of collisions reported in the STATS19 data against the number of 
deceleration events reported in the mobile phone data per section. These plots are the 
same type as in the analysis of Slip events in Section 6.4 where there is a longer description 
of the plots. Note that the numbers of events (STATS19 or deceleration) are reports as 
whole numbers, and therefore there are several overlapping points in the left plot. The 
colour bar shows the count of these overlapping points. 

 

 

Scatter plot and liner regression line of best fit 

 

Histogram with bins based on approximate 
quartiles 

Figure 7-3: Plots of the total number of collisions from STATS19 from 2018 to 2023 and 
deceleration events per section 

 

The right plot in Figure 7-3 shows the data as a histogram with uneven bins, based 
approximately on the quartiles of each distribution. If there was a strong correlation 
between the number of STATS19 collisions and number of deceleration events, it would be 
expected that sections with the lowest quartile of number of STATS19 events would also be 
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sections with the lowest quartile of number of deceleration events, and that this pattern 
would continue for the other quartiles. We can therefore observe that: 

• Comparison of the mobile phone deceleration event data shown in Figure 7-3 with 
the similar plot presented for telemetry data in Figure 6-14 shows that there were 
considerably fewer P-AMS sections covered by the mobile phone data in Region 2, 
but the number of events is much higher. The balance between STATS19 collisions 
and deceleration events is smaller, with 1,888 STATS19 events and 1,318 
deceleration events. For this analysis, the coverage of deceleration events was 
sufficiently high that sections with zero deceleration events could be included (unlike 
the analysis of slip events). 

• There is a visible relationship between deceleration events and collisions. The linear 
regression has a coefficient of determination, R2, of 0.36, showing a moderate 
relationship. This suggests that the risk of collisions occurring over a period (as 
covered by the STATS19 data) might be estimated using the number of deceleration 
events collected over a mobile phone reporting period. It is anticipated that the level 
of confidence would probably increase if a stronger relationship and coefficient of 
determination was established using data mobile phone data collected over a longer 
time period. 

• An alternative other approach to identify sections where collisions are likely is to 
consider, for example, the quartiles (right plot in Figure 7-3). Sections with a number 
of deceleration events greater than the upper quartile are more likely to represent 
sections with above the median number of STATS19 collisions. 

• Although other information from STATS19 was considered in the analysis (e.g. 
breaking down collisions by severity and if the vehicle skidded), the strongest 
relationship with mobile phone braking events was seen for the overall comparison 
shown in Figure 7-3. 

7.4 Influence of traffic 

Question: Traffic flow and density affect collision risk. Does the crowdsourced data 
provide any insight? 

This section considers the relationships between traffic density and deceleration events 
reported by the smartphone data in Region 2. In an initial comparison, a dataset of the 
count of deceleration events per P-AMS section was compared with the averaged traffic 
volume for that section. The comparison showed little relationship. The strength of the 
relationship was not strongly improved following normalisation by section length, or 
filtering to only include mainline sections on the M25 sections in Region 2. 

However, the strength of the relationship does improve when speed is included. The dataset 
was separated into two sets: the first included vehicles that were travelling at less than 
45mph when beginning braking; the second included vehicles travelling at greater than 
45mph when beginning braking. These are shown in Figure 7-4. There is evidence of a 
relationship between deceleration frequency and traffic volume when decelerating from 
lower initial speeds. As the speed limits are typically higher than 45mph on the M25 when 
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the traffic is free flowing, those travelling at speeds less than 45mph are likely to be 
experiencing congestion. 

 

  

Figure 7-4: Relationship between deceleration event counts and indicated traffic volume 
on the M25 (normalised for length). Where the vehicle was travelling at less than 45mph 

(left), and where the vehicle was travelling at greater than 45mph (right) 

 

Given the positive relationship between deceleration events and traffic collisions, there is 
likely to be an increase in the collision risk at the locations where the crowdsourced data has 
reported deceleration events. Whilst the discussion in the previous section focussed on the 
use of the deceleration data as a tool to identify sections at higher risk of collision (primarily 
to consider long term / planned interventions for skid resistance), the relationship with 
traffic and speed observed here shows potential application to support ongoing tracking of 
risk when congestion occurs. For example, by tracking speed, deceleration events and 
congestion at closures an insight could be provided on any requirement for improved skid 
resistance on the approach to the closures, or closures could be planned further from the 
start of the roadworks to avoid regions of poor skid resistance where congestion is likely to 
occur.  
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8 Coverage of crowdsourced data 

8.1 Coverage requirements for network level assessment of skid 
resistance 

Question: What timescales would be required for the data sources used in this work to 
provide skid resistance data coverage over the SRN? 

As noted in Section 2, current methods to assess pavement condition typically cover a high 
percentage of the SRN (e.g. all of lane 1, or all mainline lanes) to ensure that the network is 
adequately covered in terms of maintenance needs and to report network level condition 
indicators. To replace such a dataset, or to provide complementary data that can be used 
alongside the whole dataset, will require a comparable level of coverage. 

When considering safety (the main focus of the data provided to this work), the 
crowdsourced measure most closely linked to skid resistance measurements would be the 
slip event. However, this is event-based, which means that data it is more likely to be 
provided when an event, such as heavy braking, causes the system to record a slip. These 
events are infrequent and therefore it is likely that it would require considerable time to 
collect a crowdsourced dataset that could be considered to have “tested” the whole 
network. 

Therefore, a Monte Carlo braking simulation model was developed to explore the time 
needed to cover the network. The smartphone data was used as the basis for this. It is 
noted that the smartphone deceleration data does not indicate skid resistance. However, 
the smartphone data provided higher numbers of events than the telemetry data, hence 
providing an estimate of the “minimum” level of time that would be required. 

8.1.1 Model 

Sections of road were selected to be representative of different traffic regimes: 

• M25 between junction 8 and 9 as a high traffic road 

• A3 westbound at West Clandon, as a lower traffic road 

The frequency of deceleration on these roads was calculated and found to be approximately 
uniformly distributed, allowing the model to use an exponential distribution to model both 
the time and location of the initiation of a braking event. The distribution of distances 
covered by braking events was assumed to be normal, as previous sections of this report 
have found. 

The model randomly simulates braking events over each length of pavement, identifying 
where the pavement has experienced at least one deceleration event, with simulation 
continuing until a given percentage of coverage has been reached. To prevent boundary 
issues, braking events passing over the end of the simulated pavement continue at the start 
of the pavement. For each configuration, the model was simulated 10,000 times to reach 
convergence of the result, shown in Figure 8-1. 
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Figure 8-1: Distribution of samples from Monte Carlo model (left), convergence of Monte 
Carlo model to desired level of accuracy within 10,000 samples (right) 

 

8.1.2 M25 between Junction 8 & 9 

 

Figure 8-2: Deceleration events on the M25, anticlockwise between junctions 10 and 9 

 

The deceleration data summarised by P-AMS section in Table 7 was used to calibrate the 
Monte Carlo model to simulate the collection of crowdsourced deceleration data over the 
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M25. These sections have a total of 57 events, occurring over 7 days, over 4 lanes and 
9582m of road. This results in 0.0057 deceleration events per minute, ignoring changes in 
traffic due to time of day. These 57 deceleration events have a mean travel distance of 88m, 
with a standard deviation of 31m. To fit the assumptions of the Monte Carlo model, these 
deceleration events must be uniformly distributed across the network. A Chi squared test 
was conducted where the count of deceleration events was summed over lengths of around 
1.5km and around 1km (6 and 10 bins), as shown in Figure 8-3, and the Chi Squared statistic 
calculated from the difference between the actual and expected count in each bin. 

 

Table 7: Deceleration event data used to calibrate model to represent the M25 

Section  
Deceleration 

Events 
Section length 

3600M25/439 3 877 

3600M25/443 8 970 

3600M25/447 8 1999 

3600M25/455 11 2016 

3600M25/463 17 1994 

3600M25/471 10 1996 

 

  

Figure 8-3: Histogram showing braking event frequency along a segment of the M25 using 
six bins (left) and ten bins (right) 

 

Using 6 bins and performing the Chi Squared test, the probability of the events being 
uniformly distributed was found to be 0.87. However, this is for approximately one bin per 
2000m where ideally the length of each bin would be small enough to capture the events of 
individual road features such as junctions or signals. Ideally, this would be as small as 200m. 
However, repeating the Chi Squared test on the ten bins of approximately 1000m revealed a 
probability of uniform distribution of only 0.28. This poor result may be caused by 
insufficient data leading to random artifacts in the distribution. Whilst the evidence is 
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inconclusive, the spatial distribution of deceleration events on the M25 may be uniformly 
distributed, but more data is required for a robust statistical test. 

8.1.3 A3 Westbound 

The deceleration data summarised by P-AMS section in Table 8 was used to calibrate the 
Monte Carlo model to simulate the collection of crowdsourced deceleration data on the A3 
(Figure 8-4). In this data set there are only 16 deceleration events over 7916m and two lanes 
of highway, resulting in a deceleration event frequency of 0.00159, around a quarter of the 
M25 rate. Due to the low number of deceleration events, no statistical testing has been 
performed to confirm the events are uniformly distributed as this would be inclusive. 

 

 

Figure 8-4: Deceleration events on the A3, southbound between Wisley and Guildford 
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Table 8: Deceleration event data used to calibrate model to represent the A3 

Section  Deceleration 
Events Section length 

3600A3/325 0 325 

3600A3/327 3 1218 

3600A3/329 5 933 

3600A3/335 2 1454 

3600A3/345 0 178 

3600A3/347 1 368 

3600A3/351 2 900 

3600A3/357 0 505 

3600A3/361 0 484 

3600A3/367 0 1168 

3600A3/372 3 383 

 

8.1.4 Timescales to achieve high levels of coverage 

The Monte Carlo model was used to simulate the time required to reach varying levels of 
deceleration data coverage on the A3 and M25, as shown in Figure 8-5. The figure shows an 
exponential increase in the time required as the required level of coverage increases. This 
occurs because as the percentage of pavement covered by a deceleration event increases, 
the remaining uncovered pavement length decreases, making the likelihood of a 
deceleration event over its length reduce. 

 

 

Figure 8-5: Relationship between the percentage of the carriageway covered by at least 
one deceleration event against the average time needed to collect the crowdsourced data 
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From this investigation, and Figure 8-5, we can deduce that: 

• It would take on average 164 days to achieve 95% coverage on the M25, and 273 
days on the A3. Based on our fleet size, we would achieve one deceleration event 
per length in these timescales. 

• The coverage analysis has used smartphone data as the basis of volume. Because of 
the measurement method, telemetry slip data is more likely to be related to skid 
resistance. However, we have already found (Section 6.1) that slip events are only 
weakly (directly) linked to skid resistance. Hence it is likely that multiple slip events 
would be required to establish a robust assessment. Therefore, the timescales 
estimated from the smartphone volumes above may be significantly greater (by 
several times) when applying slip data. 

• The direct network level assessment of the skid resistance of each length of the 
network is therefore unlikely to be practical using this type of crowdsourced data, 
without very large increases in the “size” of the crowd. Even with this increase, there 
would still be a need to understand the relationship between the events reported 
and the level of skid resistance present. 

• However, this does not reduce the potential of the data as a valuable source of data 
for the assessment of localised risk on the network, as discussed in the following 
section. 
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8.2 Coverage requirements to identify high risk locations 

Question: What timescales would be required for the data sources used in this work to 
identify developing high-risk clusters on the SRN? 

The findings of Section 7.3, in which there was evidence for a relationship between 
deceleration events and collision risk, suggest that clusters of deceleration events could be 
used to identify high-risk sites, potentially before collisions occur. As the mobile phone data 
available for this work covered only one week, this also suggests that such high-risk sites 
could potentially be identified quite quickly. However, the timescale will vary with crowd 
density and risk. Therefore we have investigated how statistical analyses might be applied to 
determine when sufficient mobile phone data had been collected to make 
recommendations (potentially automatically) on whether further investigations should be 
made into the risks present on a particular site. 

We have selected a section of the M25 between Junction 10 and 11 as a case study to 
discuss this analysis. During the time the mobile phone deceleration data was collected 
there were roadworks present in this section, shown in Figure 8-6. Analysis found the 
section has 14 times the average mobile phone deceleration event frequency for motorway 
main carriageways. This poses two questions: Is there sufficient confidence in the data to 
act on it; and how much data was required to achieve this confidence? 

 

 

Figure 8-6: Section of the M25 between junction 10 and 11 with frequent deceleration 
events potentially due to roadworks and traffic management 

 

By assuming that probability of a deceleration event is constant with time and not affected 
by hourly variations in traffic volume, the observed count of events may be represented by 
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a Poisson Process where the mean is the product of the deceleration rate and time (Ross, 
2014). 

𝑋 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑇)                                                                   [1] 

The deceleration event rate, λ, can be estimated using the sample event rate, 𝜆s, which is 
equal to the event count divided by the sampling duration. 

𝜆𝑠 =
𝑛

𝑇
                                                                              [2] 

For large values of n, 𝜆s is an estimator for 𝜆 and follows an approximately normal 
distribution, where: 

𝐸(𝜆𝑠) =  𝜆,    𝑉𝑎𝑟(𝜆𝑠) =   
𝜆

𝑇
                                                          [3] 

𝜆 ∼  𝑁𝑜𝑟𝑚𝑎𝑙 (𝜆𝑠,
𝜆𝑠

𝑇
)                                                                   [4] 

This enables confidence intervals to be applied to the sample event rate as it converges 
towards the population event rate. This is shown in Figure 8-7. As the sampling time 
increases the sample rate changes and the 95% confidence interval narrows, giving greater 
confidence that the deceleration event rate obtained from the smartphone data represents 
the true behaviour of vehicles on this section, and is not a result of random chance. 

 

 

Figure 8-7: Chart showing sample rate converging towards the population rate including 
95% confidence interval and arbitrary threshold value 

 

A statistical technique such as this could be applied to identify when a length has exceeded 
a threshold rate of events, such that there is confidence that the site requires investigation. 
The threshold would be related to factors such as skid resistance site categories, traffic 
volumes, and relationships established between rates of events and collision risk.  

Figure 8-7 suggests that an arbitrary threshold of five times the average deceleration event 
rate for motorway main carriageways was exceeded after approximately 36 hours of data 
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collection on this site7 containing roadworks. The data hence shows potential for tracking 
increased risks where there have been changes to road layout or management (e.g. at 
signals) or where there is longer term traffic management in place, to support changes to 
the design or control of speed limits, in addition to helping to identify sites with higher risks 
of collision on the overall network.  

 

7 After 36 hours of collecting event data there is 95% confidence that the rate of occurrence of deceleration 

events has exceeded the threshold 
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9 Discussion 

The goal of this work has been to explore how the data provided from crowdsourcing could 
be applied to understand or manage the condition of the SRN. The analysis has centred on 
asking questions regarding the use of the data in specific applications. To summarise the 
findings we consider how well these questions have been answered. 

9.1 General observations on the collection and collation of the data and 
its content 

The data for this work were provided by two key crowdsource data providers. The telemetry 
data, which was accessed using an API, was straightforward to obtain and the content was 
simple to understand. The smartphone data was also accessible. However, the datasets are 
large and only georeferenced. To use the data alongside current condition datasets available 
on the SRN required the crowdsourced data to be referenced in the same way as current 
datasets – i.e. to section and chainage. Without this the analysis is limited to coordinate 
based (georeferencing) tools, which may not be practical, as the complexity of the network 
can result in data from different roads being considered to have been collected on the same 
road (e.g. events in slips adjacent to mainline lengths or bridges over mainline lengths being 
treated as the same cluster events that occurred on the mainline). This can result in 
incorrect deductions on road condition. 

However, although care was taken in this work to develop a robust approach to fitting the 
crowdsourced data to the network, inaccuracies remained. 

• The condition of the network varies across lanes, and the georeferencing provided in 
the crowdsourced data may not be sufficiently accurate to enable it to be fitted to 
the driven lane. As a result, this study had to collate both the crowdsourced data and 
the current data sources by carriageway, although it was possible to separate by 
direction. 

• Data for which the vehicle path was provided (deceleration events) were more 
straightforward (and robust) to fit than point events as the vehicle path could be 
used to better identify the target section and chainage. 

• The fitting was more complicated for events that traversed two sections, or sub-
section lengths, as a decision has to be made on which section to attribute the 
event. This problem occurs frequently because many events such as deceleration 
occur at junctions, which are typically associated with the ends of sections. Fitting 
across sections is also made more challenging because of the lack of connectivity 
data in the P-AMS network definition. 

Given the challenges achieving robust fitting to support comparison and combination of 
crowdsourced and traditional data sources for decision making, it may be that a hybrid 
approach to analysis would be appropriate. For example this could firstly ensure that all 
data is correctly allocated to the correct road (road name (e.g. A1) and type (mainline, slip, 
roundabout)), and then geographical analysis could be applied to cluster the data. 

During analysis of the data we also noted that having an understanding of the “lack of 
events” could provide equal value to an understanding of the events themselves. Currently 
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it is difficult to place the events into the context of the proportion of users for which an 
event occurred8. Reporting (in the telemetry data) the number of connected vehicles that 
have passed each point could provide this context. This data would need to be provided as 
overall contextual information via the API, as it would not be associated with individual 
vehicles. 

9.2 Use of crowdsourced data to report functional condition? 

Information relating to customer experience of road roughness was only provided in the 
telemetry data (bump and pothole events). There is reasonable evidence, overall, that this 
data indicates the presence of rougher roads and bump-like features that are also reported 
by current network data sourced (TRACS), indicating that the crowdsourced data may 
provide the ability to characterise roughness at the network level. However, we were 
unable to establish a relationship between the telemetry data and TRACS. Indeed, there 
appeared to be a negative trend between the datasets, which was the opposite of what 
would be expected and remains unexplained. It is possible that some of the bumps reported 
in the telemetry data related to significant defects that had been repaired before the TRACS 
survey was undertaken, but this would only explain a small proportion of the differences. 

Pavement engineers responsible for maintaining the network have suggested that the 
frequency at which a pavement develops minor and visually apparent defects (which are 
identified using the frequent visual inspections undertaken by local engineers) can be a 
strong indicator of pavement condition and may be more informative than the network 
level information on functional condition provided by annual surveys. It is possible that 
crowdsourced data could provide a more consistent assessment of these types of defects, to 
augment the application of existing survey data. 

However, there is mixed/uncertain evidence that the crowdsourced data can report specific 
bumps reported by the current TRACS survey. There appears to be a high level of 
inconsistency in the data. This may be because there was insufficient coverage in the 
dataset to enable true bumps to be filtered from false positives. However, there may also be 
disagreement between what the crowdsourced system data provider defines as a “bump” 
and what TRACS defines as a “bump”. The telemetry provider had already thresholded the 
data to classify bumps and therefore our ability to interpret the data was limited. A 
technical measure such as vertical acceleration or a parameter derived from this would be a 
more useful measure to assist in understanding the condition. Furthermore, if the 
measurement of bumpiness is being derived from sensors installed on the sprung mass of 
the vehicle, the measurement will be influenced by the type of vehicle. In this case 
additional data relating to the vehicle type or suspension characteristics may be useful. 

Collaboration between the data provider and the end user (in this case National Highways) 
could help to refine the approach taken to reporting bumps so that the data better aligns 
with the requirements of the end user. For example, if the telemetry provider continues to 
provide ratings, then the work National Highways has already undertaken to relate TRACS 

 

8 It is noted that the mobile phone dataset did include a “volume” figure. However, it was not clear how this 

was calculated and what the number related to. Therefore, we did not include this within our analysis. 
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roughness measures to user experience could be used to refine the ratings/scales used in 
the crowdsourced dataset. 

9.3 Use of telemetry data to report safety condition? 

The telemetry dataset provided event data that monitored the requirement for the 
connected vehicles to decelerate or stop on the network ('Slip Events’). We have focussed 
on comparisons between the current SCRIM safety (skid resistance and supporting data 
such as site category) data and these events. The observation that slip events occur more 
frequently on sites on which drivers are more likely to have to stop is a positive indicator of 
the potential of this data. However, individual slip events are not well correlated with 
individual SCRIM measurements on any specific site. This is not surprising. We may expect 
that measurements would have to “build up” on individual sites to improve the relationship 
with the SCRIM measurements. The coverage assessment of Section 8 suggests that building 
up such a set of data could take a long time and a much larger fleet. However, if there is a 
need to ensure that every length of the network is “inspected” this suggests that the 
crowdsourced data would not, as it stands, be ready to replace fundamental network 
measurements such as SCRIM. 

However, there is strong evidence to support the use of crowdsourced data in the 
assessment of risk. This includes deciding how to define site categories and to support 
decisions on whether interventions should be made on a site. The clustering of events, even 
in this small dataset, showed that the data could be used to provide insight in two ways. 
Where sites have been found to have low skid resistance, the crowdsourced data could be 
used to determine whether a site has a disproportionate number of vehicles “demanding” 
this skid resistance through heavy braking (i.e. for site investigation and decisions on 
treatments). However, the data also suggest that the clustering could be used to bring sites 
to the road operator’s attention which may not have been flagged by the SCRIM data. For 
example, locations where slip events are occurring for unknown reasons, which would need 
further investigation. Both applications could improve safety. 

It is interesting that the telemetry data was not correlated with collision records, given the 
case study / localised evidence of its ability to highlight risk. However, there were a very low 
number of events in the telemetry dataset. This suggests that a significantly longer 
collection period would be needed for this data source to provide a link to collision risk. 

We understand that the telemetry slip event data is only reporting significant events – for 
example where there is ABS activation or activation of traction control. This approach 
inevitably reduces the events reported to the most severe and it is possible that not all slip 
events were the result of braking. It may also introduce a degree of bias to the data 
associated with the braking technology deployed on each of the connected vehicles. 
Therefore, as for the functionality data above (bump events), there may be benefit in 
expanding the content of this data to facilitate its wider use in condition assessment, and in 
particular if the data is to provide any proxy for SCRIM. The telemetry provider has detailed 
knowledge of the vehicle that provided the data and (we assume) the context of the event. 
This may include the vehicle speed, mass and braking demand (force) and perhaps the 
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wheels/tyres in use on the vehicle and the environmental conditions9. This data could 
provide a greater insight into the slip event and the friction demand. It could also be used to 
better understand the bias between vehicles and to group together data provided by 
different fleets of telemetry data (e.g. different vehicle manufacturers). 

9.4 Use of mobile phone data to report safety condition? 

The mobile phone dataset provided event data that monitored the requirement for the 
vehicles to decelerate (deceleration events). Because the deceleration data can be related 
only to the demand for skid resistance requested by the vehicle, and not the supply of skid 
resistance (which we have assumed is more likely to be identified in the telemetry data), we 
have not compared the data directly with SCRIM measurements in this report. As the SCRIM 
site category has a closer relationship with the expected demand for skid resistance on a 
particular site, we therefore compared the deceleration event data with site category. The 
results show a reasonable relationship, confirming that the site category established for the 
sites used as case studies in the work were reflected by the level of braking demand 
recorded on the sites in the mobile phone data. Whilst the process described in CS228 
(Highways England, 2021) is mature and technically robust, the initial establishment of site 
category and investigatory levels are based on rules and limited quantities of data regarding 
the experience and behaviour of vehicles on each specific site. The observations suggest 
that deceleration data could provide further insight to support site categorisation. 

There again is strong evidence to support the use of this data in the assessment of risk. 
However, for the mobile phone data the relationship with accidents is stronger. This may be 
because of the much higher numbers of events in the mobile phone dataset. Whilst (as 
noted above) the telemetry Slip data is likely to trigger when there is a severe braking event 
(e.g. ABS activation, specific identification of slip), the mobile phone data requires a much 
lower “barrier” to triggering the event. It is interesting that there appears to be a link with 
collisions even though the barrier is lower, suggesting that these braking events are 
reasonable indicators of a near miss even without on-board vehicle safety systems 
triggering. The coverage assessments of Section 8 suggest that the larger dataset provided 
by the mobile phone data could provide a method to identify the development of higher risk 
clusters in a reasonable timescale.  

 

9 “Weather” data was included in the telemetry dataset which, we assume, relates to the use of (automated) 

windscreen wipers/rain sensors. 
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10 Conclusions and recommendations 

It has been proposed that crowdsourcing has potential to change the way in which data is 
applied to manage the condition of road networks. This work has investigated two types of 
crowdsourced data (telemetry and mobile phone) and considered how it could be applied 
alongside, or to replace, conventional pavement condition data sources. In summary: 

• Crowdsourced data is becoming accessible and with content that is relevant to road 
condition management. However, the way the data is delivered means that work is 
likely to be required to enable it to be applied alongside current data sources. In 
particular, this will need to consider how it is aligned, summarised and clustered. 
Road administrations typically deploy Road/Pavement Asset Management Systems 
to manage condition. The appropriate tools will need to be developed to facilitate 
access, fitting, alignment and analysis of the data. Refinements in the way 
crowdsourced data is delivered might help to make this more straightforward. 

• Crowdsourced data shows potential to assist in reporting the functional condition of 
road networks. The functional condition data provided in this work focussed on 
roughness/bumpiness. However, the data provided was limited to a range of 
thresholded values. Either for this reason, or because of the short collection time-
period, there was limited agreement with conventional roughness measurements. 
The provision of greater detail (e.g. the vertical acceleration or a derived parameter) 
might provide a more useful measure to assist in understanding condition. Data 
relating to the vehicle type/suspension characteristics may also useful.  

• For safety, the crowdsourced data is unlikely to provide a direct replacement for 
SCRIM measurements. The correlation with SCRIM was not strong, and it would take 
a long time to build up a robust picture of the network. However, there is evidence 
to support the use of the data in the assessment of risk. This includes deciding how 
to define site categories, and to support decisions on whether interventions should 
be made. Where sites have been found to have low skid resistance, the 
crowdsourced data could be used to determine whether a site has a 
disproportionate number of vehicles “demanding” this skid resistance, and it could 
be also used to bring sites to the road operator’s attention which may not have been 
flagged by the SCRIM data. As for the functionality data, the provision of greater 
levels of detail in the data may help provide a more useful measure to assist in 
understanding the condition. 

• Although there is strong potential for the application of this data to manage safety 
condition, crowdsourced data may not provide a comprehensive understanding of 
risk. There may be sites on which collisions are likely (or have occurred), for which 
low numbers of events have been recorded. The risks presented by these sites will 
be misrepresented in the crowdsourced dataset. Future studies into the application 
of crowdsourced data should also consider these types of site. 

• Given the potential for this data, collaboration between data providers and end 
users (e.g. asset management system providers or road administrations) could help 
to refine the approach taken to reporting the data, to ensure that the content aligns 
with the requirements of the user.  
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The application of crowdsourced data in road condition 
assessment  

 

In recent years a new source of data has become available that is referred to as “crowdsourced 
data”. This can be provided by vehicles or mobile phones, on a network-wide basis, from multiple 
sources. Crowdsourcing has the potential to change the way in which data is used to manage the 
condition of the SRN. The study presented in this report investigates whether and how 
crowdsourced data has the potential to be applied in the management of the condition of SRN.  
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what extent, the crowdsourced data types could be applied to understand road condition and how 
it complements the assessment of the functional and safety level of service measured by current 
data collection methods.  

It is concluded that crowdsourced data provides content that is relevant to road condition 
management. However, tools will need to be developed to facilitate access, fitting, alignment and 
analysis of the data. Refinements in the way crowdsourced data is delivered might help to make 
this more straightforward. The data itself shows potential to assist in reporting the functional 
condition of road networks. However, providing a greater level of detail in the data might provide a 
more useful measure to assist in understanding condition. The data can also assist in assessing the 
safety condition of road networks, in particular in the assessment of risk. This includes deciding 
how to define site categories, and to support decisions on whether interventions should be made.  
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