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Executive Summary 

The joint Law Commissions’ report on automated vehicles outlined numerous methods for 
regulators to assess and report safety performance in line with a defined safety standard. 
Their key recommendation in this area was that Ministers should set an appropriate safety 
standard for Automated Vehicles (AVs) with support from experts (Law Commission and 
Scottish Law Commission, 2022). No matter how the safety standard is developed, the 
proposed In-Use Regulator will be expected to develop practical ways of measuring and 
reporting on current safety performance against the standard.  

In this report, we suggest that a single measure of performance based on traffic safety 
statistics is not sufficient. Instead, a combination of both leading and lagging indicators of 
safety performance are required that monitor different elements of safety. This report 
evaluates a series of both leading and lagging Safety Performance Indicators (SPIs) that may 
be used to evaluate safety performance. 

Collection of leading SPIs allows for much larger datasets to be generated compared to the 
data available from solely measuring lagging SPIs such as collision rate. However, while 
leading SPIs their correlation to an increased exposure to risk is yet to be established. This 
cannot be known prior to deployment. As such, it is necessary for some data to be collected 
as soon as possible so that the process for outcome reporting can be refined over time.  

For the the proposed SPIs to be meaningful in any way, they must account for the variables 
that affect risk exposure and it is likely that different operational design domains (ODDs), 
deployment contexts and use cases may require different safety performance targets to 
assess the SPIs against. As such, methods are proposed to segment data by key variables 
known (to the best of our current knowledge of AVs) to have an impact on risk exposure. For 
each of these variables, the value of capturing them is assessed alongside the availability of 
the data required to capture them effectively. 

Early AV deployments will accumulate far fewer miles than conventional vehicles in the same 
time period. As such, the rate of occurrence of risk events cannot be directly compared 
between automated driving systems and conventional driving. Methods for normalising data 
sets are required that takes into account variables that affect an AV operation’s exposure to 
risk. Guidance is required to provide manufacturers with a consistent method of how to 
present safety performance data which should align where possible with international 
approaches to establish interoperability and access to much larger datasets in time. 

The proposed in-use monitoring scheme primarily relies on the capture of in-vehicle data to 
monitor AV safety, which is a key input of aggregated data analysis for monitoring safety 
performance. However, the use of other data sources, such as incident investigation data, 
public incident reports and police reports cannot be overlooked as these provide coverage of 
some safety relevant events that the vehicle may not or can not detect itself.  

There is a need to assess safety performance against a defined standard, with conventional 
human driving as the preferred reference by the Law Commission of England and Wales and 
the Scottish Law Commission (and those consulted by them). To compare with the wealth of 
data collected by an AV, equivalent datasets for leading SPIs and risk variables need to be 
collected. In practice, this means human driving performance will need to baselined in 
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comparable scenarios, use cases and deployment contexts. A naturalistic driving study with a 
methodology consistent with the data required in the in-use monitoring scheme and/or data 
from real fleets with cameras and advanced telematics would likely be the best way to collect 
this data. 

The findings of this work have been summarised into a high-level process for aggregated data 
analysis which is shown in Figure 1. The associated process steps have then been assigned to 
different stakeholders through the use of a RACI (Responsibility, Accountability, Consulted, 
Informed) matrix to highlight how each stakeholder is involved in the process. This is shown 
in Table 1, accompanying the process flow. 
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 Figure 1: Proposed safety performance reporting process 
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Table 1: RACI Matrix for the proposed safety performance reporting process 

 In-Use 
Regulator1 

Approval 
Authority2 

Manufactu
rer 

Operator 

Collection of safety performance 
indicator data 

I  A R 

Data collection for event context 
and risk exposure 

I  A R 

Aggregation over time horizon (i.e., 
Reporting interval) 

I  A  

Data segmentation and 
normalisation 

I  A/R C 

Calculate reportable SPIs I  A/R C 
Collection of conventional driving 
datasets for comparison 

A/R C C I 

Development of safety targets and 
thresholds 

R A C I 

Comparison against conventional 
driving safety targets3 

A/R I I I 

Comparison against historic 
performance4 

A/R C I I 

Placing new requirements on 
manufacturer/operator, Updates 
to type approval, public reporting 

R A C C 

The purpose of this reporting process is threefold. 

• To feedback on safety performance to the manufacturer, in order to assess 
compliance with the safety case submitted at approval (and other scheme 
requirements) and set out any necessary remedial action 

• To generate learnings around limitations of an approval scheme, that need to be 
addressed; and 

• To report on the safety performance of automated vehicles in GB for the purposes of 
generating industry wide knowledge and assure the public that there is sufficient and 
robust oversight of these vehicles.  

 
1 In-use regulator also includes any investigating bodies. 

2 And Authorisation Agency, as appropriate 

3 This comparison would be provided only to the manufacturer it relates to. Scheme-wide statistics would be 

produced and which are shareable with public and wider industry  

4 This comparison would be provided only to the manufacturer it relates to. Scheme-wide statistics would be 

produced and which are shareable with public and wider industry 
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1 Introduction 

One of the most common and well-known road safety statistics is that human error is a factor 
in almost all road traffic collisions. In Great Britain in 2020, driver/rider error contributed to 
65% of all collisions, impairment, and distraction (including drugs and alcohol) contributed to 
17% and behaviour and inexperience contributed to 25%5. These statistics are often used as 
justification by industry and government to push for the development and introduction of  
Automated Vehicles (AVs), because AVs in theory shall never be able to make these mistakes.  

In this context, it is often claimed that AVs will be safer than human drivers because they have 
the potential to eliminate collisions where human driver error is a factor, thus reducing the 
impact on public health and the associated social and economic costs. However, alongside 
these potential benefits, the introduction of AVs may also bring about potential risks. Factors 
such as inclement weather, complex driving tasks and unforeseen situations are known to be 
difficult for AVs and poor AV performance may increase the safety risk. New technologies also 
bring the possibility of new types of collision risk factors. For AVs, this could include 
programming errors, sensor faults or unforeseen behaviours by the AVs. 

Public confidence and, ultimately, acceptance of AV technology will depend on whether AVs 
are truly safer than conventional driving (Kyriakidis et al., 2015). While it has been shown that 
public confidence is increased by exposure to positive experiences with the technology 
(Penmetsa et al., 2019), negative experiences - such as a collision involving an AV - are more 
likely to come under greater public and media scrutiny than a collision involving human 
drivers only. In these circumstances the claims made around the safety benefits of AVs are 
likely to come into question. As such, the safety benefits of AVs are a key open question. So 
far, there is insufficient evidence to demonstrate with statistical significance the safety 
benefits of AVs compared to conventional driving; validation of this claim will be vital to 
acceptance and uptake of the technology by consumer and society at large. 

It has been reported that traditional validation of safety performance prior to deployment 
(i.e., accumulation of fault-free miles driven in the real world above an acceptable threshold) 
is largely unfeasible for AVs (Kalra and Paddock, 2016). As such, robust claims about safety 
performance compared to human driving can only be made following deployment. The 
introduction of AVs in the UK will provide the opportunity to start to collect AV safety 
performance data and measure their actual safety benefit.  

  

 
5 Includes only accidents where a police officer attended the scene and in which a contributory factor was 

reported. https://www.gov.uk/government/statistical-data-sets/reported-road-accidents-vehicles-and-

casualties-tables-for-great-britain  

https://www.gov.uk/government/statistical-data-sets/reported-road-accidents-vehicles-and-casualties-tables-for-great-britain
https://www.gov.uk/government/statistical-data-sets/reported-road-accidents-vehicles-and-casualties-tables-for-great-britain
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2 Scope and Purpose 

This report explores how in-use monitoring data collected to validate AVs against approval 
requirements during operation can also serve as a basis for the statistical evaluation of wider 
AV safety performance compared to human driving. It is expected that an acceptable target 
for AV performance will need to be set in relation to current human driving performance. As 
recommended by the Law Commission (Law Commission and Scottish Law Commission, 2022), 
setting a safety standard in line with public expectation is thought to be a political decision. 
As such, this report does not seek to develop a safety target or standard. Instead, the report 
explores how an in-use monitoring framework developed for the GB AV approval scheme can 
incorporate a mechanism for collecting data and assessing AV performance under the scheme 
to support measurement against the safety standard when developed. 

This report discusses method to evaluate safety performance during operation. In previous 
work under Work Package 5 (WP5), data and measures have been defined for the purposes 
of identifying events that potentially have safety relevance and data to provide context and 
understanding of the event. For this, measures have been defined split into leading and 
lagging measures.  

Lagging measures specifically target data capture from extreme trigger events, which highly 
correlate to adverse risk outcomes (e.g. typical severe collision scenarios). They give insight 
on events that already occurred which are typically small in number and, as such, without a 
clear ability to estimate future likelihoods given low occurrence. Leading measures target 
data capture of vehicle operations that have the potential to become realised risk events. 
They are a proxy for actual risk occurrence. They give insight into potential risk and are 
typically much larger in number than lagging measures.  

These measures focus on identifying and qualifying single events that may indicate potential 
non-compliance with approval requirements, safety case arguments or traffic rules. In doing 
so, a recommended data set has been defined to support the identification and subsequent 
analysis of unsafe events. 

The focus of this report is to define measures that enable the statistical evaluation of safety 
performance. For clarity these have been termed Safety Performance Indicators (SPIs) in this 
report. SPIs are not the same as leading and lagging measures; they are derived from them. 
As such SPIs can also be leading or lagging. Leading and lagging measures are individual-level 
data, meaning they represent a single observation (i.e. data point). To enable statistical 
evaluation of safety performance, leading and lagging measure data must be collected over 
time to produce aggregate level data. The data then has to be processed in order to remove 
false positives, separate by variables that affect safety, and normalised by exposure for a 
statistical comparison to be made. As such, SPIs can be seen aggregated and processed 
leading and lagging measures. For example, an example of a lagging measure is the existence 
of a collision between the AV and another vehicle. The corresponding lagging SPI would be 
the frequency of that type of collision per unit distance (e.g. in the last million miles miles). 
Recommendations are made in this report in how this process could work for the in-use 
monitoring scheme.   

The SPIs have been developed on the basis of the data expected to be available in the scheme 
(i.e. the already defined minimum dataset specification (Chapman and Perren, 2021)). 
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However, every attempt is made to conceive of additional data necessary to allow or enhance 
the analysis. The value of this additional data for the analysis, as well as the practical issues 
with collecting it are discussed, to provide a balanced recommendation.  
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3 Requirements for a Safety Standard 

The Law Commission of England and Wales and the Scottish Law Commission, in their joint 
report and their consultation papers before it, discuss the subject of automated vehicle (AV) 
safety and what it means to be safe enough to be permitted on roads or other public places. 
(Law Commission and Scottish Law Commission, 2022) 

In its consultation, the Law Commission asked consultees the question of “how safe is safe 
enough” for AVs, offering three possible standards: 

(a) As safe as a competent and careful human driver (option A).  

(b) As safe as a human driver who does not cause a fault incident (option B). 

(c) Overall, safer than the average human driver (option C). 

The key recommendations from the Law Commission’s report regarding the safety standard 
for AVs can be summarised below: 

• The safety standard must be measurable 

• The decision over how safe an AV should be depends on whether the remaining risk 
is acceptable to the public. This is essentially a political and not a technical decision, 
which means the safety benefits must be demonstrable 

• There must be equity in the distribution of remaining risk; AVs, while safer overall, 
should not be more dangerous to one road user group vs another, e.g. safer for 
motorised users but more dangerous for pedestrians. This aligns with 
recommendations to the European Commission on Connected and Automated Vehicle 
(CAV) ethics (European Commission, 2020) 

The recommendations of the Law Commissions’ report have a clear impact on how the safety 
standard will be set, as comparisons between the performance of Automated Driving Systems 
(ADS) and “conventional” (manual) human driving are key. This in turn, will have an impact 
on the data types used to determine the safety standard (data requirements) as well as the 
mechanism through which those data will be collected and stored while the vehicle is in-use. 

A major limitation for comparing AVs and human drivers and setting a safety standard based 
on the comparison is the lack of comparable data for existing conventional vehicles. While 
there is relevant research around human driving behaviour and collisions or near miss events 
(for example, the NHTSA 100 Car Naturalistic Driving Study  (National Highway Traffic Safety 
Administration, 2006)), there is no agreed systematic approach to collecting and processing 
this data at scale. Defining the measures, dataset, and framework for collecting data is 
required; the collision and near miss reporting requirements already defined provides a 
structure for this for automated vehicles during operation (Balcombe and Perren, 2022). For 
a comparison with conventional vehicles, equivalent datasets are required (see Section 5.5). 

As such, no matter how the safety standard is set, the data needed to measure it in-use will 
need to be: 

•  Comparable to conventional driving datasets, either through existing data or through 
further research. 
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• Able to measure risk exposure to different road user groups. 

• Not solely  based on traffic collision statistics  

• Intuitive and comprehendible by the public, policymakers, and regulators. 

These requirements form the basis of the discussion on monitoring safety performance in this 
report. 
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4 Measuring Against the Safety Standard 

4.1 Safety Performance Indicators 

Measuring the safety performance of AVs and comparison with data relating to human drivers 
is essential in setting the safety standard. The in-use regulator also requires the collection of 
such data from the vehicle to continuously monitor AV performance and reassure the public 
about the safety of AV technology. 

A comprehensive list of safety relevant events of interest can be found in the WP5 Task 1 
report – In-Use Monitoring Taxonomy (Reed, 2022). The in-use monitoring scheme should 
broadly be able to collect information on: 

• Collision events (lagging measures) 

• Near miss events (leading measures) 

• Safety-related violations, such as exceeding the speed limit; running red lights; or 
careless or dangerous driving (also leading measures) 

• Other road rule violations, not directly related to safety but that negatively impact 
the flow of traffic or safe movement of other road users. 

Data collected surrounding these events provide the opportunity to identify the Safety 
Performance Indicators (SPIs) that are most useful in measuring the safety performance of 
AVs. 

4.1.1 Lagging SPIs 

Lagging SPIs are the indicators that measure actual harm (crashes) and their outcomes (RAND, 
2018). They give insight on events that are typically low in number (as the number of collisions 
is generally low compared to the total miles travelled by a vehicle fleet) and therefore without 
clear ability to estimate the future likelihood of an event. These data measures are used to 
flag when a collision or actualised risk outcome has happened and help investigate individual 
events. 

Traffic collision research investigates collisions and gathers data that can help understand 
collisions, how and why they happened. The Road Accident In-Depth Studies (RAIDS) project 
in the UK (Cuerden and McCarthy, 2016), managed by TRL on behalf of the Department of 
Transport; the Reported road casualties Great Britain, which uses the STATS19 reporting 
system, (HM Government, 2021); and the GIDAS (German In-Depth Accident Study) (GIDAS, 
2019) project are examples of such databases that contain collision data. In the UK, RAIDS and 
STATS19 hold information about collisions such as time and location, road conditions, vehicle 
details and manoeuvres, casualty/injury details and contributory factors to the collision. 
Generally, the STATS19 database contains high-level information on more collisions while 
RAIDS contains a smaller number of collisions but in much greater detail. This data can then 
be used to evaluate road safety by calculating different traffic collision statistics.  

Previous work under WP5 recommended series of data sets which are required to identify 
possible collision and injury events for low-speed automated vehicles (LSAVs) (Chapman and 
Perren, 2021). These lagging measures are used to trigger data capture surrounding an event 
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that may potentially be of interest.  While the proposed data sets of demonstrate a good 
ability to detect events, they do not directly allow measurement of collision risk over time in 
this current state.  A degree of processing is required to convert them into comparable SPIs 
relating to collision risk. Firstly, the presence of an actual collision following any of these 
triggers needs to be identified. For example, a safety envelope close proximity trigger does 
not distinguish as to whether a pedestrian was struck by the vehicle or simply brushed passed 
it. As such a degree of investigation is required to verify the event and understand severity 
and context (see Section 5.3). Following this investigation, the relevant event information can 
be coded and filed for aggregated analysis. 

It is also evident that there is not complete compatibility between the recommended 
minimum data sets and data stored in collision databases such as STATS19 or RAIDS. The 
reason for this is twofold. Firstly, not all of the data previously proposed in the WP are 
recorded by these databases. Secondly, as these databases only record collisions (not other 
risk events associated with AV operation that could lead to casualty or injury). The proposed 
data sets for AV performance are expected to be available as defined in the minimum data 
set specification for this project (Chapman and Perren, 2021)  

For measuring human performance of the same SPIs for comparison (see Section 5.5) will 
require further data collection. Useful data are usually part of research projects, such as the 
NHTSA 100 NDS, but are limited in number, scope, and relevance. The relative scarcity of such 
data is an issue for comparability between conventional and AV driving; one that may partially 
be addressed if more EDR-equipped vehicles are on the road. For example, EU requires new 
vehicle types of the M1 and N1 categories sold in the bloc after July 2022 to come equipped 
with EDR devices. (European Commission, 2022). This will not enable capture of like-for like 
lagging measures but would allow identification of comparable collisions and injury events 
used to aggregate Lagging SPIs for human driving. It could also partially generate similar data 
to categorise events to allow comparison of Lagging SPIs between AVs and conventional 
driving. 

Lagging SPIs are characterised by the following: 

• High correlation to risk incidents that have actually happened and can be measured 
(precision). 

• Reasonable coverage of a risk incident (recall) and its severity. This includes lower 
severity incidents; however, may result in a drop in recall as some events may not be 
recorded by SPIs. 

• Data can be lost in rare instances where the data recording mechanisms or triggering 
sensors are damaged (severe collisions) which may skew the findings towards lower 
severity events. 

• The low occurrence of collisions with traffic fatalities and injuries (compared to vehicle 
miles travelled) indicates that it would take a significant amount of time to build a 
proper sample of AV collision data and compare automated and conventional driving 
in a statistically meaningful way (Kalra and Paddock, 2016). Using lagging SPIs and 
relevant data without building confidence first may lead to loss of trust by the public 
which would be harmful to the AV industry. 
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• Given the low occurrence of lagging SPIs, the perceived frequency in AV system 
updates (which may drastically alter) would likely not allow for data on enough 
collisions to be collected to measure safety performance between updates, though 
this may provide insights into how vehicle safety performance is improved over time.   
 

Kalra and Paddock (2016) attempted to estimate how many miles AVs would need to drive 
(and how much time that would take) to demonstrate a certain level of safety. Using current 
US collision statistics for conventional vehicles (1.09 fatalities/100 million miles) and making 
assumptions regarding statistical confidence (95% confidence level) and AV fleet operation 
(100 vehicles driving 24/7 at an average speed of 25mph) they calculate that, to demonstrate 
that the same fatality rate is achieved as conventional driving, AVs would need to drive 275 
million miles fault-free, which would take the fleet of 100 AVs over twelve years to achieve.  

A similar simple calculation can be attempted for the AVs being deployed in the UK using UK 
collision data (DfT, 2020) and LSAV characteristics while also making some essential 
assumptions. The following calculation highlights the required miles driven to demonstrate 
that AVs are as safe, or safer, than conventionally driven vehicles. In a scenario whereby AVs 
were involved in substantially more collisions than conventionally driven vehicles, then a 
conclusion that AVs are less safe than human drivers could be reached in a shorter timespan. 

According to DfT’s 2019 annual report on road casualties (pre-covid data), the fatality rate per 
billion vehicle miles was 4.87 fatalities per billion miles. However, that figure includes all 
fatalities across the whole GB road network. The number of fatalities on urban roads (where 
early deployments of automated vehicles are foreseen) is 653, with traffic estimated at 135 
billion miles for urban roads. The rate of fatalities for urban roads is therefore 4.84, only 
marginally lower than the national average. It should be noted that urban roads include both 
urban ‘A’ roads and minor roads, with varying speed limits often in excess of a Phase 1 vehicle 
max speed. 

To demonstrate that LSAVs have a fatality rate of 4.84 per billion miles with a 95% confidence 
level, the vehicles would have to drive approximately 612 million failure-free miles. With a 
fleet of 100 vehicles being tested 24h per day, 365 days a year at a speed of 20mph, this would 
take almost 35 years. 

Assuming an average operating speed of 15 mph, the time required to collect the sample 
would be about 46.5 years. 

Estimating the fatality rate of the fleet within 20% of the assumed rate (and 95% confidence 
for the standard distribution), the required miles are almost 20 billion (approx. 1,132 years to 
collect at a maximum speed of 20mph) 

Clearly, it is impossible to collect this amount of data. This highlights the need for simulation 
and scenario-based testing prior to deployment, but to continuously validate against this 
target in-use would be impossible without taking a different approach. Leading SPIs are 
needed to widen the sample size of the data available. Furthermore, new methods assessing 
risk exposure, outside of accumulating vehicle miles are required. However, there is still value 
in collecting lagging measures as a means of both monitoring the change in safety 
performance over time and for establishing the predictive value of leading SPIs (as discussed 
in Section 4.3). Indeed, just as higher frequency leading SPIs can provide insight into the 
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expected frequency of collisions, lower severity collisions can provide insight into the 
expected frequency of more severe collisions (including fatalities). As such, they do still have 
value for analysis 

To summarise, safety performance for conventional driving is measured and reported using 
statistical data such as collision rate, collision severity, fatalities, and injuries etc. Lagging SPIs 
from in-vehicle data are valuable in credibly in identifying hazardous events (such as collisions 
or other events that have actually happened, but not sufficient to identify other safety events 
such as near misses or traffic infractions) and can also be used to infer a collision rate; these, 
along with other reporting sources such as police reports, on-site collision investigations and 
infrastructure data, can be used to determine the collision rate for AVs. However, the number 
of AVs currently on the road does not allow us to build a data sample sufficient for a 
meaningful (statistically significant) comparison with conventional vehicles. With the collision 
rate of AVs being a key SPI for the regulator to determine whether AVs are as safe (or safer, 
as the safety standard would require) as conventional vehicles, other methods of acquiring 
this information are necessary.  

It is not feasible to measure AV safety performance in this way. For the purposes of regulatory 
oversight however, it is still recommended to monitor this as it is possible to draw statistically 
significant conclusions that an AV is less safe than this target quite quickly. Aside from this, 
Leading SPIs and identifying their correlation to safety outcomes, are the key to measuring 
AV performance. This is examined in the next section. 

4.1.1.1 Recommendation: 

Monitor a set of lagging SPIs for AVs through collecting in-vehicle data (lagging measures and 
telematics), police reports, insurance reports, collision investigation and infrastructure data. 
The following lagging SPIs are recommended: 

• Collisions classified by severity 

• Passenger injury; and 

• Other realised hazards (e.g., fires, noxious gas releases). 

Appropriate methods should be established for aggregating lagging SPIs (as discussed in 
Section 5.1) and segmenting data by risk exposure variables (Section 5.4) 

4.1.2 Leading SPIs 

Leading SPIs measure the prevalence of events that are precursors to realised outcomes. As 
no collision necessarily occurs, these events are not inherently unsafe. However, their 
presence indicates that the system may not be performing safely or as expected. As such, 
they can be used as proxies for collisions if a clear correlation can be established (RAND, 2018).  

Leading SPIs have significant potential benefits. Firstly, they happen more frequently than 
their lagging counterparts.  This enables faster learning and may allow for statistically 
significant results and useful SPIs to be obtained earlier in deployment (AVSC, 2021). Leading 
SPIs also enable learning without requiring dangerous events to come to fruition. This is a 
safety benefit, but is also beneficial because these events may be significantly detrimental to 
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the overall development of AVs due to their disproportional negative media attention and 
effects on public confidence in AVs. 

However, there are two key challenges with using leading SPIs, based off of leading measures, 
for statistical evaluation of the safety of AVs. The first is that as yet, correlation to safety 
events has yet to be established and so their significance on safety cannot accurately be 
stated. The second is that they are difficult to define and are often highly contextual. This 
means that they are difficult to record in such a way that meaningfully differentiates them 
from safe driving behaviour. 

4.1.2.1 SPIs considered 

This section summarises a variety of proposed leading SPIs and assesses their usefulness in 
evaluating the safety performance of an AV. A review of literature was conducted and the 
following SPIs have been selected because it is believed that they are likely have a correlation 
to the safe functioning of AVs. Broadly, this belief is based on the existence of correlation to 
safety outcomes in human drivers (for example, acceleration profile) or based on the 
understanding of what is required for safe operation of a AV (for example, disengagements). 

The leading SPIs can be broadly split into the following five categories: 

• Vehicle kinematics and driving style: How the vehicle travels through its environment, 
such as acceleration profile.   

• Proximity measures: How close the AV gets to other road users, and for what period 
of time. Close proximity gives smaller margins for error.  

• Internal vehicle health: This includes SPIs such as correct object detection and how 
often the AV is no longer able to continue its journey in the event of a disengagement 
or ODD exit.  

• Appropriateness of behaviour: This includes SPIs which involve an assessment of the 
vehicle’s behaviour, such as whether the vehicle committed a traffic infraction or 
performed an appropriate action in a given situation.  

• User feedback: How users, such as passengers, feel the AV has performed, and how 
safe they felt during its operation.  

The leading SPIs considered during this work are presented below: 

• Acceleration of ego vehicle: This would include longitudinal and lateral acceleration 
of the ego vehicle. Instantaneous high acceleration may indicate evasive action taken 
by the AV, while sustained periods of high acceleration may indicate improper driving 
style.  

• Jerk of ego vehicle: Jerk is the rate of change of acceleration. High jerk may be 
indicative of constant corrective actions being taken, or poorly calibrated sensors.  

• Trigger of electronic stability control (ESC): ESC systems use automatic braking of 
individual wheels to assist in maintaining control of the car in critical driving situations 
involving a loss of traction. This could be the result of a failure to assess road 
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conditions, leading to a loss of control and is indicative of driving beyond the vehicle's 
capabilities.6 

• Acceleration of surrounding vehicles: unusual acceleration profiles of surrounding 
vehicles may indicate unsafe behaviour. In such an example, surrounding vehicles may 
be forced to take evasive action to avoid a collision with the AV.  

• Time-to-collision (TTC): The time it will take for entities to collide, assuming their 
current velocities and direction are maintained. By definition, all collisions result in a 
TTC = 0. Periods of low TTC may indicate near misses while sustained low TTC may 
indicate unsafe driving behaviour. It should be noted that there are a number of 
mathematical variations of TTC. For example, modified time-to-collision (MTTC) 
assumes that the entities' current accelerations are also maintained. For the purposes 
of this assessment, these have all been considered under TTC. This is because their 
applications, and the expected requirements for implementing each, are very similar.  

• Safety envelope violations: The safety envelope is the physical space around the ego 
vehicle, inside which a collision may not be avoidable if another entity is present. Of 
pertinence to measure is how often safety envelope is violated, by who, by how much, 
and how quickly restored. This is closely related to TTC (TTC is one measure of 
calculating the safety envelope) and may be indicative of tactical awareness and 
forward planning. Different algorithms have been developed for the assessment of a 
safety envelope in real-time have, such as Intel Mobileye’s Responsibility Sensitive 
Safety (RSS) (Mobileye, 2020) and Nvidia’s Safety Force Field (Nvidia, 2020). 

• Post-encroachment time (PET): The time between one road user departing from a 
location of potential collision to the time another road user arrives in that same area. 
This is also referred to as following time or following distance. It is closely related to 
safety envelope and TTC. 

• Vehicle's correct detection of objects and instructions: How often, and when, the AV 
correctly identifies and classifies hazards and other objects. This could also include the 
vehicle's ability to recognise and comply with visual instructions, whether they come 
from a person or from a sign. This is required for accurately perceiving the operating 
environment, which is key to safe operation of a vehicle. This may be based on 
adjustments to the classification of objects or other changes in perception; these 
could include discrepancies between the vehicle’s predicted trajectory compared to 
its actual trajectory. It may also be based on operating a separate monitoring system 
(independent of the ADS). Both are considered as possibilities at this stage. 

• Disengagements: The number of times the vehicle transitions from automated mode 
to manual mode during operation. This would include operator intervention. 
Disengagements during deployment are an indicator that something unexpected has 
happened and in which the vehicle may no longer be able to safely continue a journey.  

 
6 ESC, as well as other safety systems on the vehicle may or may not be present which means the collection of 

data relying on them may not be possible, unless such systems were mandated. 
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• Ratio of disengagements to Minimum Risk Conditions (MRCs) achieved: An example 
of an MRC is coming to a stop in a safe place on the side of the road. Failure to act 
appropriately in the event of a disengagement is likely to leave the vehicle in an unsafe 
position on the road.  

• ODD exit (or close to limit): This would include surpassing the threshold of any 
element of the ODD as defined by PAS 1883 or similar standard. Exiting the ODD is not 
always due to a system fault, but may be indicative of poor planning from the vehicle, 
or an inability to accurately perceive the environment. Consistently operating near the 
limit of the vehicle’s capability may cause failures more often.  

• Traffic  rule violations: For example, failure to stop before a line, crossing central 
markings, running a red light, or speeding. These violations often result in scenarios 
which are hazardous, irrespective of the entity controlling the vehicle. There are 
situations in which it is appropriate to commit minor violations, such as in order to 
provide room for an emergency vehicle. As such, AVs may occasionally intentionally 
break a rule. These instances may be differentiated from times when the vehicle 
unintentionally breaks a rule or commits and offence. Proper response action: Correct 
response taken within a specified threshold after an event occurs. This allows for more 
in-depth analysis of an event and may highlight instances of poor driving when not 
otherwise triggered by other measures.  

• Roadcraft: Based on the ‘Roadmanship’ concept originally proposed by the RAND 
corporation (RAND, 2018)as a general measure of the vehicle's conduct. This may 
consist of a number of other indicators in this list (for example, acceleration, post-
encroachment time, TTC). Overall, “good” road conduct is likely to result in fewer 
collisions and is a target for all road users. 

• Qualitative feedback regarding feeling of safety: An overall measure of a other road 
users’ feelings of safety while in the vehicle. Human beings tend to have good intuition 
for whether a situation was safe, and road users feeling unsafe is likely to be the result 
of poor driving.  

A summary of the leading SPIs is shown in Table 2. The data used to aggregate these metrics 
are derived from the Leading and Lagging measures minimum data set specification 
(Chapman and Perren, 2021). Collection of this dataset would need to be confirmed at 
approval. 
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Table 2:  Summary of leading SPIs 

Category Safety Performance Indicator 

Vehicle kinematics and driving 
style 

Acceleration of ego vehicle 

Jerk of ego vehicle 

Trigger of electronic stability control (ESC) 

Acceleration of surrounding vehicles 

Proximity measures Time to collision (TTC) 

Safety envelope violations 

Post-encroachment time (PET) 

Measure of the vehicle’s 
internal health 

Vehicle's correct detection of objects and 
instructions. 

Disengagements 

Ratio of disengagements to MRCs 
achieved. 

ODD exit (or close to limit) 

Appropriateness of behaviour Traffic offences and Highway Code rule 
violations 

Proper response action 

Roadcraft 

User feedback Qualitative feedback regarding feeling of 
safety 

4.1.2.2 Assessment of SPIs 

In order to be able to make assessments of safety on the basis of leading SPIs, an in-use 
regulator will need access to information such as: 

• The correlation of the SPI to lagging safety outcomes 

• The feasibility of gathering data required to calculate the SPI 

• How this compares to the benchmark used for determining acceptability, for example 
to the risk posed by human drivers  

Given that leading SPIs can be present without a safety-related outcome, such as a collision, 
occurring, the fundamental criterion is whether they actually have a correlation to safety 
outcomes, and what the nature of this correlation is.  

However, this will only be possible once AVs are in use and there is sufficient data available 
to draw such correlations. Until then, the way in which SPIs must currently be assessed is 
different. As such, other criteria which reflect these requirements have also been included: 
an overview of these and the justification for their selection is listed below.  

• Data availability: For an SPI to be used, it must first be obtained. This criterion 
considers challenges relating to measuring and perceiving that an event has occurred. 
It also considers the reliability of sensors involved in obtaining the relevant data.  

• Expected correlation to safety-related outcomes: Fundamentally, the question which 
must be answered for each criterion is whether it is indeed correlated to the lagging 
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safety outcomes which are to be avoided. While this is not currently attainable, it is 
possible to made educated estimations regarding a particular measure’s correlation 
to safety-related outcomes.  

• Ease of defining a meaningful threshold which has correlation with safety outcomes: 
It is very difficult to prescribe in a way which meaningfully differentiates between 
acceptable and unacceptable behaviour. Segregating data and defining thresholds 
relative to ODD, vehicle type, or use case, rather than across all use cases of 
automated vehicles may improve this. This is because a particular type of automated 
vehicle, such as an LSAV operating in a single, known environment is likely to have a 
much more tightly constrained window of expected performance, and will therefore 
be easier to establish if behaviour is outside of that window and therefore unexpected 
and/or unsafe. Methods of data segregation are explored further in Section 4.2.  

• Coverage of collision types and road users: It is important to be able to evaluate the 
correlation between an SPI and all collision types (such as front collisions, side 
collisions) and for all road users, in order to be representative of all scenarios seen in 
the traffic ecosystem. This is particularly true where the AV is required to recognise 
some aspect of its own performance, for example, in disengagements and object and 
event detection and response. 

• Data points and sources required to calculate SPI: With reference to the minimum 
dataset (MDS) specified in Task 2 (Chapman and Perren, 2021), additional vehicle data, 
and external data, this criterion highlights any gaps in what is required compared to 
what can be obtained.  

• Feasibility of gathering the required data points from the AV: Related to the point 
above. For example, does it require supplementary information from connected 
infrastructure or other road users? 

• Ease of collecting comparable human data: The Law Commissions’ report (Law 
Commission and Scottish Law Commission, 2022) highlight the use of human 
performance as a benchmark for AV performance. brought findings of comparing 
against human drivers. This may prove challenging in some areas as not all SPIs, such 
as disengagements, have a human-comparable counterpart. For those that do, data is 
not recorded to the same degree as is specified for AVs. Human comparability is 
explored further in Section 5.5.  

• How intuitive it is, and can it be easily understood by the public: Public acceptance 
is key to the adoption of AVs in the UK. In order to support this and educate the public 
on the benefits and risks of AVs, it is important that these SPIs used to determine that 
risk can be communicated to the public.  

Each SPI was qualitatively assessed as “high”, “medium”, or “low” against each of the criteria 
summarised in Table 3.  
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Table 3 - Summary of assessment criteria for each SPI 

Assessment criteria 

Data availability  

Correlation to safety outcomes 

Ease of defining a meaningful threshold which has correlation 
with safety outcomes 

Coverage of collision types and general operation 

Data points and sources required to calculate SPI 

Feasibility of gathering the required data points from the AV.  

Ease of collecting comparable human data 

How intuitive it is and can it be easily understood by the public 

4.1.2.3 Recommendations  

The following sets of recommendations outline the key criteria on which a decision should be 
based, and therefore the key SPIs which should be recorded. Two sets have been listed: 

1. The ideal scenario, in which all the required information is readily available,  

2. A scenario which can be actioned with currently available data and understanding of 
correlations to safety 
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This acknowledges the need to act now to address these questions around the safety of AVs, 
while providing a target for the industry to attain.  

Recommendation set 1  

In an ideal scenario, an assessment would be made on the basis of validated correlation 
to safety outcomes. This assessment would be made against a known benchmark, which 
is likely to include reference to human performance. This assessment would also be made 
on the basis of all collision types and for all road users. As such, the key criteria required 
to make a decision would be:  

• Correlation to safety (validated) 

• Comparability to human performance 

• Coverage of event types 

On the basis of this assessment criteria, it is estimated that the key SPIs which would 
inform such decisions would be:  

• Proximity data (TTC, safety envelope, PET): These have a high correlation with 
safety in human drivers, and a high coverage of event types. 

• Vehicle's correct detection of objects and instructions: Failures in human 
perception of a situation and other objects is highly correlated to collisions. 
However, a measure of this is difficult to develop as they represent unknown 
occurrences. This may however be used to provide context to other events (i.e., a 
factor in event causation – Section 5.3.6). 

• Proper response action: By definition, if all road users took a proper response in 
each scenario, very few, if any, collisions would occur.  

• Roadcraft: A combined measure would allow a singular measure to assess the 
quality of average driving behaviour by the HAV, which would ease interpretation 
by public and other stakeholders. However, this is dependent on all measures used 
in its calculation and their combination to be well understood. 

• Disengagements (including supporting information such as whether an MRC was 
achieved): Disengagements are a useful indication that something unexpected has 
happened; analysis and post-processing of these events is likely to lead to 
significant learning.  

• Vehicle kinematic data (speed, acceleration, jerk): These have a high correlation 
with safety in human drivers and are often indicative of near miss events such as 
evasive manoeuvres.  

• Traffic offences and Highway Code rule violations (or a subset thereof): These 
have a high correlation with safety in human drivers. However, they are limited by 
the ability to detect a traffic infraction. It is suspected that some traffic infractions 
will not be detectable. 
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It should be noted that although validated correlation of safety would be leveraged in this 
ideal scenario, this recommendation list is based on estimated correlation with safety events. 
The method for establishing the predictive value of these measures through monitoring is 
discussed in Section 4.3.  

4.2 Establishing Thresholds 

For all measures, a threshold value must be defined such that any value that exceeds that 
threshold triggers recording of data required for aggregated analysis (as well as 
comprehensive data required for in-depth investigation). While the measure aligns to risk 
behaviours, ultimately the threshold is what delineates between what is considered 
acceptably safe and unacceptably safe performance. 

Setting thresholds also play a crucial role in determining how well the events recorded by 
exceeding such thresholds correlate to actual risk exposure and thus what is inside and 
outside of scope for analysis. Safety Performance of an AV is defined in terms of: 

Recommendation set 2 – IMMEDIATELY ACTIONABLE 

The main challenges with currently assessing the safety of AVs are that correlations to 
safety outcomes have not yet been validated, and that it is not possible to accurately and 
consistently obtain the required SPIs. As such the key criteria for assessing which SPIs 
should be recorded in the first iteration of in-use monitoring are: 

• Correlation to safety (expected) 

• Data availability  

• Data sources required, with respect to those specified in Task 2 

On the basis of this assessment criteria, it is the key SPIs which may be recorded 
immediately and used as the basis for an initial evaluation of AV safety are:  

• Proximity data (TTC, safety envelope, PET): These have a high correlation with 
safety in human drivers, and a high coverage of event types. 

• Disengagements (including supporting information such as whether an MRC was 
achieved): Disengagements are a useful indication that something unexpected has 
happened; analysis and post-processing of these events is likely to lead to 
significant learning.  

• Vehicle kinematic data (speed, acceleration, jerk): These have a high correlation 
with safety in human drivers and are often indicative of near miss events such as 
evasive manoeuvres.  

• Traffic offences and Highway Code rule violations (or a subset thereof): These 
have a high correlation with safety in human drivers. However, they are limited by 
the ability to detect a traffic infraction. It is suspected that some traffic infractions 
will not be detectable. 
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• Operational Design Domain (ODD) – Broadly, the environment and situations the AV 
is designed to safely operate within 

• Operational Behaviour – The capability of the AV to perform certain actions or 
manoeuvres or demonstrate behaviours 

• Behavioural Competencies – How ‘well’ the AV performs an action, manoeuvre, or 
other behaviour 

As such, thresholds that delineate between acceptably safe and unacceptably safe 
performance will also relate to these factors. Other factors may also affect threshold selection 
such as use case (passenger or goods service). It is therefore necessary to set thresholds in 
the context of the deployment. There are two ways to accomplish this: 

• Allowing the manufacturer to set acceptable thresholds. Thresholds would be set in 
relation to their specific ODD, operational behaviour and behavioural competencies 
which would be evidenced during approval (i.e. scenario-based testing). This would 
allow for non-nominal behaviour to be identified very specifically for each AV 
deployment and so define its own level of acceptable risk. Ultimately this would still 
need to conform to all legal requirements within the ODD. However, doing so would 
mean threshold values between manufacturers (or deployments) would differ which 
inhibits comparability when data is aggregated across all deployments to generate 
leanings for the industry as a whole. 

• Target thresholds set by the regulator. The in-use regulator would define acceptably 
safe performance thresholds that apply to all AV deployments that are reasonably 
similar. Both leading and lagging SPIs (and the data supporting them) is designed to 
be outcome based and so technology agnostic. In order to define such thresholds, the 
regulator would need to provide a set of reference ODDs and applicable behavioural 
competencies that the manufacturer can match to (as close as possibly). For each 
reference ODD, acceptable thresholds could be defined. However, given the many 
variables that make up an ODD, a nuanced change in any of them may affect risk 
exposure dramatically. Since the correlation between ODD variables and risk is not 
yet well understood, it may be difficult to generate reference ODDs that allow 
meaningful comparison. 

The choice of which approach will ultimately depend on the priorities of aggregated data 
analysis for outcome reporting. If generation of industry wide safety recommendations is 
prioritised, thresholds set by the regulator may be preferred, though the limitations of this 
approach would need to be clearly stated in any publicly reported data. However, if this is not 
a priority, then using manufacturer-defined thresholds would allow for better monitoring of 
safety performance of an individual AV deployment. 

A hybrid approach could be considered, whereby initially thresholds are set by each 
manufacturer. As larger samples of data are collected, greater understanding of the 
relationship between ODD and risk exposure may be gained and a set(s) of unified thresholds 
could then be developed in the longer term.  

The thresholds for monitoring would likely be governed by the thresholds set as part of the 
AVs behavioural competencies. As such, the threshold set identifies where there is unsafe 
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performance. However, ultimately, the threshold is set by the manufacturer or regulator, the 
regulator would need to be prepared to accept or reject the level of risk to the public 
associated with AV performance in line with those thresholds. In order to make this decision, 
the regulator would require detailed evidence base for justifying how the threshold value has 
been set and why it is appropriate. 

4.3 Developing correlation through monitoring 

One of the key limitations with leading SPIs is that their correlation with actual safety risk is 
not well known. This relates to the actual measure as well as the threshold values for 
triggering data capture. It is expected that the value of collecting SPIs will need to be assessed 
regularly in order to justify their continued recording and specific analysis is needed to 
confirm the potential degree of correlation. Previous work in this work package has shown a 
method for this (Chapman and Perren, 2021). 

For example, an analysis could show that 10% of the triggers of a leading measure7 with a 
specified threshold occurred in an actualised risk outcome (e.g, a collision) whilst 60% occur 
during clear risk scenarios (e.g.,  near-collision) and 30% as false positives. This would show 
that the measure is correlated to both a 10% realised risk + 60% clear risk scenarios which 
develops the correlation between risk outcomes and potential risk for that measure.  This can 
then be used to justify that the leading measure has 7 times the benefit for statistical analysis 
than just measuring actualised risk outcomes.  

After capture data it should be highlighted that analysis of outputs is essential: imagine 
instead an alternative trigger again with 10% of cases matching actualised risk, but following 
analysis of the remaining 90%, 0% can be identified as potential risk scenarios. In this case no 
potential predictive uplift is possible as no additional risk scenarios are identified. This would 
present as an appropriate leading measure with no additional correlation to aid risk 
estimation. These principles apply not just to the measures themselves but also the 
thresholds selected for them. 

The above two scenarios are demonstrated in Table 4 below. 

Table 4: Examples assessing predictive value of SPIs  

Leading 
measure 
example 

Actualised 
risk 
correlation 

Unknown risk requiring sample analysis  Additional 
Predictive 
Value 

1 10% 60% additional risk scenarios 
captured 

30% false 
positives 

GOOD (*7) 

2 10% 0% additional risk scenarios 
captured 

90% false 
positives 

BAD (*1) 

  

 
7 Note measures is used over SPI here as this refers to the detection of induvial event 
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5 Data Analysis Requirements 

Metrics may be used to identify individual events for case study analysis. Case studies are a 
powerful tool to generate in-depth understanding. This is especially beneficial for 
understanding the causal factors that led to (or precipitated) an event. Case study analysis in 
an in-use monitoring context relates to in-depth investigation and study of a single event. The 
scope, requirements, and methods of in-depth investigations for case study analyses has been 
addressed separately (Arnold and Perren, 2022) and so is out of scope for this document. 

In order to evaluate patterns or trends in safety performance, aggregated data analysis over 
a time period  (around 6-12 months is expected to be a reasonable period, although this will 
vary based on factors such as ODD and distance driven) is then required. Aggregated data is 
the collection of data from a large number of individual events such as a single collision or 
near collision event. This aggregated data can be presented in the form of a single, 
measurable output (such as number of collisions in the last million miles) which represents 
the vehicle’s performance over that period. This output will change with time, as new data is 
recorded.  . Individual data may be collected from multiple sources such as in vehicle data, 
police reports, investigation data. This data must be combined for the purposes of examining 
trends and reporting. The main purposes of aggregated data analysis are to examine trends, 
make comparisons between AV performance and a baseline (e.g. conventional driving 
performance), or reveal insights that are not observable from a single data point.  

For aggregated data analysis to be effective, the results must be normalised by exposure, 
categorised by variables associated with risk (i.e. segmented). To ensure comparability for 
datasets of conventional driving, thresholds for the measures need to be defined. The 
requirements for aggregated data analysis and related issues are discussed further in this 
section. 

5.1 Method of Dataset Generation 

For the measures identified in Section 4.1 above, data may be aggregated in two different 
ways: 

• Rate of occurrence – where the frequency of SPIs is measured by discrete occurrences 
below a defined threshold and normalised by exposure (see Section 5.4). This is useful 
where risk exposure is related to a transitory hazard such as a near miss  or a rule 
violation. 

• Relative duration – where the time spent below the defined threshold for an SPI is 
measured as a percentage of overall travel time. This is useful for where risk exposure 
is more closely related to a continuous hazardous state over a period such as unsafe 
speeds, close proximity, etc. 

Each method applies differently to each measure. Table 5 below assesses the applicability of 
both methods to each measure. Where both methods are possible it is recommended that 
both methods are calculated as the presentation of the data in different ways could reveal 
different insights (for example a single occurrence of TTC could be 1% of the duration of the 
AVs operation or 20%, but the risk between these is vastly different).  
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Table 5: Aggregation method relevant to each SPI 

 Method of Dataset Generation 

Lagging SPI Rate of occurrence Relative Duration 

Collisions X  

Passenger injury X  

Other realised hazards X  

Leading SPI   

Proximity data (TTC, safety 
envelope, PET) 

X X 

Disengagements (incl. 
context) 

X  

Vehicle kinematic data 
(speed, acceleration, jerk) 

X X 

rule violations X  

5.2 Data Sources 

In the proposed in-use monitoring framework, measures are expected to be derived (or at 
least informed) by a variety of different data sources. The primary source of data is expected 
to be data collected from the ADS and vehicle systems on board and this will be supported by 
other data. A summary of the expected data sources for ADS safety performance analysis is 
given in Figure 2 below.  

 

Figure 2: Summary of expected data source for aggregated data analysis 

The relevant data sources will depend on the measure type and particulars of the event and 
will likely be used in combination. For example, a public report of a traffic infraction could be 
sent to the manufacturer/ operator (directly or indirectly via the regulator) which would 
prompt the manufacturer to look back at any data recorded at the time of the event to 
identify relevant details such as location, event partners, etc. (see Section 5.3). This data may 
also be available from the public report, and potentially other sources.  

This leads to the issue of handling overlapping data from multiple sources for analysis. 
Manufacturers reporting data from disparate sources will need a process to resolve any 
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conflicts and select the best available data for analysis. This process may be defined by each 
manufacturer; however, this may lead to different conclusions around the prioritisation of 
different data sources over others which may hinder the comparability.  

5.2.1 Recommendations 

It is recommended that further guidance is provided on how overlapping datasets are 
resolved when reporting aggregated data, providing a robust process with a focus on ensuring 
the highest quality data is reported. The UK government has set out a Data Quality Framework 
(DQF) (DQH, 2020) which outlines their philosophy for the management of data quality. It 
adopts the 6 dimensions of data quality defined by the Data Management Association of the 
UK (DAMA UK): 

1. Accuracy 

2. Completeness 

3. Uniqueness 

4. Consistency 

5. Timeliness 

6. Validity 

The principles defined in the DQF are useful to apply for this context, and guidance should 
align with assessing and prioritising data based on the 6 dimensions of data quality. 

The use of different data sources also requires the recorded parameters to be consistent and 
translatable for the purposes of comparison. As such the definition of the parameters must 
be unified across the different data sources. The difficulty in this is the wide variety in the 
methods of data collection for some measures and parameters. A suitable engineering 
definition for rainfall for example, may be based on visibility measured by the vehicle’s 
sensors or a record of average rainfall intensity (in mm). These definitions will not be 
practicable for a public report or for collision investigation. This highlights the need for 
consistent high-level definitions that are applicable across all data sources which data source-
specific definitions can translate into. The in-use monitoring taxonomy (Reed, 2022)defined 
within this project provides a basis for this. 

It is recommended that this taxonomy is progressed and published as part of the in-use 
monitoring framework. Communication and dissemination with all stakeholders is advised 
including the police, members of the public, investigating bodies, manufacturers and 
operators. Where possible, data should align with current processes (e.g. STATS19) so as not 
to cause undue burden for those collecting and sharing data, especially if voluntary (such as 
public reporting). The same definitions should also be adopted by or aligned to data sources 
used for establishing a comparison for conventional driving safety performance. Section 5.3 
below considers the different parameters used for analysis (i.e. data segmentation) and 
proposes potential parameter values based on existing or proposed definitions. 
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5.3 Data Segmentation 

Segmentation refers to partitioning data into discrete categories that align with different 
types of risk. This allows trends and insights to be revealed about safety performance in 
relation to specific risk scenarios. Many factors may be used for segmentation, but all should 
ultimately relate to parameters that are expected to impact risk exposure. While there is 
insufficient deployment mileage to determine parameters that directly correlate, learnings 
from trials and testing as well as conventional driving safety data can help to identify initial 
data segmentation parameters to be used that can be correlated to risk exposure as data is 
collected. Where possible, the data methods for segmentation have been specified such that 
they align with existing datasets (such as STATS19) to enable utilisation of the data. 

A set of segmentation parameters based on perceived factors for risk exposure are proposed 
below. They are evaluated based on potential values for analysis as well as availability of 
required data sources and recommendations are made as to how they can be utilised. 

5.3.1 Event Classification and Triggered Metrics 

A reportable event may be identified through the triggering of one, or a combination of, 
leading or lagging measure(s) which are monitored throughout operation. At a minimum 
these measures should include those specified in the proposed minimum dataset (Chapman 
and Perren, 2021). Furthermore, each event will need to be classified into different types of 
risky driving or unsafe behavioural competencies. 

The type of event (classification) and the measures through which it was identified should be 
reported. 

Value for Analysis:  

Matching of leading measures against event type will help to establish their correlation to 
safety. For example, if low TTC is commonly measured directly preceding a collision, this will 
identify that low TTC is a suitable predictive measure. Similarly identifying where a threshold 
triggered but no associated risk event (i.e., a false positive) was identified will also help to 
evaluate the predictive value of the measure. 

Measuring the co-incidence of the measures may also provide insight into trends or patterns 
of behaviour. For example, if all non-conflict critical incidents involving ODD exits are also 
measured to have high rates of lateral or longitudinal jerk, this may indicate an issue with the 
AVs ability to safely perform an MRM, which may prompt further monitoring and 
investigation. 

Data Requirements: 
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Detected events are expected to be processed by the manufacturer in order to establish 
whether identified events indicated non-compliance with type approval. Through this process, 
events are expected to be confirmed and categorised into different event types. This means 
data on the number of false positives and confirmed events as well as an event classification 
is expected to be available through the proposed in-use monitoring dataset and process. 

5.3.2 Event partners 

HAVs are expected to interact with many different road users during operation. Correct 
identification of an object (including road users) and planning an appropriate action is led by 
the ADS’ Object and Event Detection and Response (OEDR) capability. It is important to 
understand whether the ADS can safely manage interactions with all road users and identify 
where there are road user demographics that are disproportionately affected by the AV. 

Value for Analysis:  

Measuring the rate of occurrence of unsafe events by the party involved in the event can help 
to identify which road user groups and demographics are most exposed to the risk of potential 
unsafe driving by the AV. This may give insights into the performance of Object and Event 
Detection and Response (OEDR) capability, notably perception and classification of different 

Recommend that manufacturers report the rate of occurrence of SPIs by event 
classification in line with event taxonomy definitions. 

Recommend that manufacturers report on the metrics used to identify events where are 
combination of measures are reported.  

Recommended Variables:  

Event classification is expected to conform to the taxonomy definitions of different event 
types to provide a standardised mean of event categorisation. 

Collision 1: Non-police-reportable low-g physical 
contact 

Near-collision 

Collision 2: Non-police-reportable property damage 
only 

Safety Critical Event 

Collision 3: Police-reportable collision with vehicle / 
property damage only 

Proximity Conflict 

Collision 4: Police-reportable collision with possible or 
slight human injury 

Non-conflict critical incident 

Collision 5: Police-reportable collision with serious 
human injury or fatality 

Safety relevant violations 

False positive (no event) 
Road rule violations (may be further sub-
divided by infraction type) 

N.B: ‘Police reportable’ refers to where a person(s) is injured or if there is an immediate risk of injury or death (Arnold 

and Perren, 2022)   
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objects. Identifying whether there is disproportionate risk to road user demographics from 
AVs is a key recommendation from the Law Commissions’ and a likely public expectation. 

Monitoring the demographic of involved parties may also identify biases in machine learning 
training sets used for the perception and classification of road users or defects in ODD 
construction so that they can be corrected. Algorithmic decision making such as Machine 
Learning can introduce bias towards different demographics. This has been shown to 
inadvertently discriminate against marginalised populations (Mittelstadt et al., 2016). In the 
context of automated vehicles this may unintentionally introduce disproportionate levels of 
risk to road users with protected characteristics through for example, the bias in path 
prediction of pedestrians with different skin tones. While the exact nature of how algorithmic 
bias may impact AV safety is not known, it is recommended that it is monitored (CDEI, 2020). 
In order to monitor against this, data around protected characteristics of event partners 
would need to be collected. 

Data Requirements: 

It is possible to collect data on the category of event partner directly from vehicle data if the 
AV is capable of identifying and classifying objects in such a way. As such, data could be 
retrieved on object classification and matched to the event in question; however this may not 
always assign the correct object as the “event partner” accurately and there is also the 
possibility of objects being classified incorrectly. In these cases external sources of data (such 
as public reported information or infrastructure data), or video data would be needed to 
support this classification. 

Furthermore, ADS’ do not need to explicitly classify objects in order to drive safely and comply 
with traffic rules and it is known that some ADS solutions do not have this capability. In such 
cases, post-event processing and analysis would be required to identify and classify the event 
partner after the fact, which may require the matching of additional datasets such as video 
data. These are outside the minimum recommended dataset for in-use monitoring proposed 
earlier in the WP (Chapman and Perren, 2021). 

Collection of data relating to protected characteristics (as defined by the Equality Act) is 
controlled by the Data Protection Act and most are treated as special categories of personal 
data. While restrictions on the collection, storage and use of special category data applies, 
the DPA explicitly allows it for the purposes of monitoring equality (CDEI, 2020). In fact, the 
Centre for Data Ethics and Innovation (CDEI) suggests that a greater collection of protected 
characteristic data would allow for fairer algorithmic decision-making in many circumstances 
and is recommended (CDEI, 2020). This could be extended to consider factors such as whether 
the vehicle accurately classifies wheelchair or mobility scooter users as pedestrians. 
Practically the collection of such data by the vehicle in real-time may be incredibly difficult to 
do consistently.  

For casualties, some protected characteristics such as, age and race are recorded on STATS19, 
however age may be estimated by the recording officer rather than established as fact. 
Ethnicity is recorded for all casualties (including fatal, serious, and slight). Officers will ask for 
self-defined ethnicity using the 16+1 standard ethnicity categories (MPA, 2007). Where the 
casualty cannot self-define the visible 6+1 categorisation is used by the officer. TRL experience 
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with police investigation has outlined, however, that officers do not often record ethnicity 
because it rarely pertains to event causation. As such, this data may be unreliable.  

5.3.3 Weather and Environmental Characteristics 

Environmental factors such as weather are widely reported to impact an automated system’s 
OEDR capability as well as the dynamics of the vehicle (i.e., loss of grip/traction)). Safety 
performance will depend on the AVs ability to correctly perceive objects and the situation. 
Sensor performance in adverse weather conditions will likely have an impact on safety. 

Value for Analysis: 

Reporting on weather and environmental characteristics can help identify operational 
limitations in regard to weather, which can inform policy on restrictions in certain weather 
conditions. 

Data Requirements: 

Recommend that the rate of occurrence of events is categorised by event partner 
(including protected characteristics) for all collision events where an investigation takes 
place.  

Recommend that event partners are identified and classified for all reported events. 
Where possible, collection of data relating to some or all protected characteristics for all 
events is highly encouraged. 

Recommended Variables:  

Event partners are expected to be reported in line with the in-use monitoring taxonomy 
(Reed, 2022) which aligns with categories within the STATS19 form for police reported 
collisions in Great Britain: 

Car Motorcycle – cc unknown 

Taxi / Private hire car Electric motorcycle 

Van ≤3.5t mgw Pedal cycle 

Goods vehicle 3.5t<mgw<7.5t Bus or coach ≥17 passenger seats 

Goods vehicle ≥7.5t Minibus 8-16 passenger seats 

Goods vehicle – weight unknown Agricultural vehicle 

Motorcycle ≤50cc Ridden horse 

Motorcycle >50cc and ≤125cc Mobility scooter 

Motorcycle >125cc and ≤500cc Tram / Light rail 

Motorcycle >500cc Other 

Micromobility User  

 

Protected Characteristics are defined in the Equality Act. Some are less likely than others 
to be subject to algorithmic bias than others. A subset of the protected characteristics 
likely to be of interest is proposed below: 

Sex Age 

Race, colour, ethnic, national origin, nationality Pregnancy and maternity 

Disability status  
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Weather and environmental data is not directly specified in the minimum dataset. After-the-
fact analysis may allow this data to be collected. Some LiDAR based approaches have been 
used for vehicle detection of rain and fog (Yoneda et al., 2019) which can be used for ODD 
monitoring, but it is not easy to provide in a consistent format. This may also require a large 
degree of post-processing to retrieve an accurate measurement and will place additional 
burden on developers to store potentially large volumes of raw LiDAR data. 

Alternatively, it may be possible to match event time and location with meteorological data 
through analysis post-event. However, rain and especially fog can be highly localised, in time 
and space. Standard meteorological data is likely not specific enough to draw conclusions 
about conditions at the event location. Such a process is also likely to be human led and 
resource intensive.  

At a minimum it is expected that the ADS will be aware of conditions outside of its ODD and 
be able to initiate and safely complete a Minimum Risk Manoeuvre (MRM). As such 
disengagements and MRM events can be reported and relatively little investigation should 
identify whether the cause of the disengagement is related to limited sensor performance, 
which may imply adverse weather impacts. For example, the AV may detect reduced visibility 
outside a limit defined in its ODD, while the AV may not classify it as rain or fog, or an obscured 
sensor it would imply that environmental conditions are at play. Further classification of 
weather at the time of the event will be extremely useful and doing so is strongly encouraged, 
however, the burden on the manufacturer is currently unknown.  

BSI PAS1883 specifies a method for recording environmental conditions for specifying and 
ODD. However, the methods and measurements proposed are not likely to be measurable by 
a vehicle (such as rainfall measured in mm/h) or a person attending the scene or reviewing 
the data (BSI, 2020).  
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It is possible to classify weather and environmental characteristics qualitatively from on-site 
attendance of event (applicable where a collision investigation takes place). This is done for 
all police reported collisions currently (HM Government, 2021). 

5.3.4 Static Operational Domain Elements 

Value for Analysis: 

Collection of road environment data may help to identify trends or correlations between rate 
of occurrence of unsafe events and specific road features. This may indicate a weakness in 
ODD coverage of the Target (i.e. deployment) Operational Domain (TOD) which may then 
prompt further investigation and resolution by the manufacturer. It may also reveal 
insufficiencies in the scenario test programme for certain road features orstatic objects and 
may also indicate areas where road design can be improved to accommodate AV deployments 
in the future. 

Data Requirements: 

For the purposes of the proposed in-use monitoring scheme, the manufacturer is required to 
share the world model representation the AV perceives and is used as an input to its planning 
module8. The model should include the objects that are required for the AV to be able to 
demonstrate its defined behaviours and competencies and ensure compliance with the 

 
8 This concept is discussed further in the In-Use monitoring framework report for this project (Balcombe and 

Perren, 2022). 

Recommend that weather and environmental characteristics are reported alongside rate 
of occurrence for all collision events where an investigation takes place. This is expected 
to be available from collision investigation. 

Recommend that disengagement/MRM status are reported alongside rate of occurrence 
for all reportable events. Where necessary the reason for disengagement/MRM should be 
investigated and where weather and environmental characteristics are the cause, this 
should be reported. 

Recommended Variables:  

Weather and environmental characteristics align with classification used at the scene by 
Police investigators in STATS19: 

Fine (without high winds) Fine (with high winds) 

Raining (without high winds) Raining (with high winds) 

Snowing (without high winds) Snowing (with high winds) 

Fog or mist Other 

 Unknown 

Light conditions should also be reported: 

Daylight Darkness: no street lighting 

Darkness: streetlights present and lit Darkness: streetlighting unknown 

Darkness: streetlights present but unlit  
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Highway Code. In order to ensure compliance with the Highway Code, the world model should 
contain the static objects referenced in the Highway Code. Examples include lane markings, 
stop line markings, pedestrian crossings, traffic lights (including status). As a result, the static 
objects perceived at the event by the vehicle should be reportable. However, this does not 
provide insight for events where objects were not classified or misclassified objects which 
could be an important factor in event causation.  

Furthermore, there is no standardised or prescribed list of objects that must be detected and 
classified by an ADS. The need to identify and classify different objects to ensure rule 
compliance may also differ between systems. For example, an AV may not be able to identify 
a stop sign but may demonstrate compliant behaviour by assuming a stop sign exists at every 
junction and thus broadly complying with the relevant highway code rules (though this may 
also introduce risk as it is counterintuitive to human behaviour). In order for this data to be 
shared, a reference list of relevant world model objects could be provided as guidance to 
manufacturers. This would need to be non-prescriptive to allow for different technical 
solutions but should be broadly based on the objects listed within the highway code. 

After-the-fact analysis of the event may also allow road features and other static objects to 
be identified such as through matching location to map data, although real time processing 
of the data onboard the vehicle is expected to be much less resource intensive. 

It is possible to classify road type and road features qualitatively from event attendance and 
investigation as is done for all police reported collisions currently (HM Government, 2021). 
STATS19 forms provide a coding method for this.  
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5.3.5 Event Type 

For many decades, TRL has attended road collisions to gather additional data that can help to 
understand why and how incidents occurred and to help develop possible countermeasures 
to prevent their occurrence in future. The Road Accident In-Depth Studies project (RAIDS; TRL, 
2012), which TRL manages on behalf of the Department for Transport, uses a specific coding 
system to characterise the most common types of incidents. This system uses fifteen different 
manoeuvre types (e.g. overtaking and lane change; collision with obstruction; merging) each 
with between one to seven different variants (e.g. cornering – lost control cornering right; 
cornering – lost control cornering left; cornering missed intersection or end of road). 

Value for Analysis: 

A similar categorisation of manoeuvres for safety events involving LSAVs may be helpful for 
regulators in determining whether it is safe for operations to continue and for developers and 
operators in taking mitigating actions to prevent such events happening in future. This may 
also help to identify trends in high-risk manoeuvres for all AVs or issues with aspects of an 
individual AV’s behavioural competencies. 

Data Requirements: 

Recommend that static operational domain elements that are relevant to the event in 
question are reported alongside rate of occurrence of event. To achieve this, a reference 
list of relevant objects should be produced that can be used to ensure relevant objects 
from the world model are published as reportable outputs.  

Recommend road features and other static objects are recorded and reported for all 
investigated collisions as is done currently. In order to align statistics for collision reporting 
and other events (where no on-site investigation takes place), it is recommended that the 
definitions of road features and static objects are aligned with existing collision reporting 
methods (i.e. STATS19). 

Recommended Variables:  

Road features and other static objects should align with the classification used at the scene 
by Police investigators in STATS19. The following factors should be reported for all 
investigated collisions. Alignment should be sought between these, and elements shared 
by the world model: 

Road type (roundabout, one-way street, dual 
carriageway, single carriageway, slip road) 

Pedestrian crossing (zebra crossing, 
pelican/puffin/toucan, traffic signal (pedestrian 
phased), footbridge, subway, no physical crossing 
within 50 m) 

Junction detail (roundabout, mini roundabout 
within 20m of junction, slip road, T junction, 
Private driveway/ entrance) 

Road surface Condition (dry, wet/ damp, snow, 
frost/ ice, flood) 

Junction control type (authorised person, 
automatic traffic signal, stop sign, give way/ 
uncontrolled) 

Carriageway hazards (dislodged vehicle load, other 
object, involvement in previous accident, 
pedestrian in carriageway, animal in carriageway) 

Special conditions (auto traffic signal out, auto 
traffic signal partially defective, permanent road 
marking/ signing defective or obscured, road 
works, road surface defective, mud, oil or diesel)  
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Manoeuvre planning is likely to be a key element in understanding event causation and as 
such, the manufacturer would be expected to make this data available to provide context to 
the event. This data is expected to be available, but the ontology and classification of 
manoeuvres done by an AV would likely be specific to each ADS’ planning module and would 
not be consistent across different AVs.  

5.3.6 Causal and Contributory Factors 

It is useful to clarify why each event occurred to help understand the chain of accountability 
for an event and to consider how such events might be prevented in future. Determining 
responsibility for causing an event can be challenging with fault potentially lying across 
multiple actors. However, in the deployment of LSAVs it will be vital to establish whether an 
incident was caused or influenced by operation of the vehicle or whether responsibility lay 
elsewhere. 

Value for Analysis: 

Analysing the rate of occurrence of events by suspected cause will help to identify insights 
into common issues and failures experienced by AVs both individually (to feedback to the 
manufacturer for improvement) and for all AVs deployed under the scheme (to develop 
industry wide recommendations. 

Data Requirements: 

It is expected that upon identification of an event, the manufacturer should record and persist 
all data necessary to determine the cause of the incident. This can then be accessed by the 
regulator for investigation or event causation is self-reported by the manufacturer. The 
degree to which this data is used to investigate to determine causation is likely to be a 
decision made by the regulator (although an manufacturer may wish to proactively 
investigate events prior to reporting) depending on the type of event. 

Recommend that HAVs report event type. This should be supported by standardised, 
objective method by which vehicle data could be used to report event type automatically 
when an event has been detected. 

Recommended Variables:  

RAIDS collision codes provide a useful starting point for classification, but their definitions 
would likely need adapting to account for non-collision scenarios that are also proposed 
to be reported on under the scheme. Codes are listed below, but for each code, 
manoeuvre/collision sub-types exist. 

Overtaking and lane change Crossing (vehicle turning) 

Head on Merging 

Lost control (straight road) Right turn against traffic 

Cornering Manoeuvring 

Collision with obstruction Pedestrians (crossing road) 

Rear end Pedestrians (other) 

Turning vs same direction Misc. 

Crossing (no turns)  
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One of the issues with this approach, however, is the ability to correctly understand all the 
causal factors associated with the event. Learning from the use of contributory factors in 
police reporting via STATS19, is that it is not always easy to establish all the causal and 
contributory factors involved in an event from initial investigation. There is often a bias 
towards factors that are readily apparent, or more ubiquitous. For example, TRL experience 
has found “failed to look properly” and “failed to judge other person’s path or speed” are 
often reported as contributory factors, because they apply to almost all possible collisions 
scenarios. There are concerns as to the ability of manufacturers to be able to establish event 
causation reliably and consistently. However, it should be said that this limitation does not 
necessarily prohibit reporting of it. More detailed investigation may be used to more 
accurately understand and report of causal and contributory factors for a subset of events as 
well as a means of determining how accurately they are assessed during initial investigation. 

5.4 Normalisation by Risk Exposure 

Normalising results refers to adjusting data with different measurement scales and risk levels 
to enable comparison across data sets and correct for known limitations (AVSC, 2021). Early 
AV deployments will accumulate far fewer miles than conventional vehicles in the same time 
period. As such, the count of risk events cannot be directly compared between ADS and 
conventional driving. Exposure normalisation improves the comparability of results across 
different data sets by creating a common scale and improves interpretability and portability 
of results. 

To enable in-use monitoring assessment of safety performance, data should be adjusted by a 
measure of risk exposure. Commonly traffic collision statistics are normalised by number of 
kilometres driven or hours of operation (AVSC, 2021). However, a meaningfully large sample 
size cannot be obtained for early deployments using these measures. 

Recommend event causation is reported for each event for high-level causal and 
contributory factor definitions. These may be at first defined by the manufacturer. For 
collisions or other events investigated by the regulator, this may be reaffirmed or updated 
following the results from the investigation. 

Recommend the regulator regularly assesses the applicability of causal and contributory 
factors and how well factors reported by a manufacturer match those determined through 
further investigation. 

Recommended Variables:  

The following event causal factors have been defined in the In-use monitoring taxonomy. 
Detailed event investigation may identify new types or subsets of factors, and so should 
be used to update these variables over time. (Reed, 2022) 

Perception error Infrastructure / Environment 

Decision error Other Road User action/error 

Action error Cybersecurity 

Human factors error Outside ODD 
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The Automated Vehicle Safety Consortium (AVSC) suggests utilising other exposure factors 
such as frequency of road user interactions or frequency of scenario types, can help to 
increase sample size for limited deployments and also enable comparison between 
deployments with different ODDs (AVSC, 2021). Consider the rate of occurrence of traffic 
infractions, for example ignoring a red traffic light signal. While kilometres travelled in a single 
journey may be low, the number of signal-controlled junctions travelled may be much higher 
and so its use as a measure of risk exposure would generate a much larger dataset more 
quickly and be much more specific to the driving context. 

Allowing different sampling techniques to be used by different manufacturers would make 
the comparison and aggregation of industry-level data impossible. Furthermore, a sampling 
strategy may be selected that favours a particular ODD or use case which may skew evaluation 
of safety performance. Ensuring consistent methods for sampling and presentation of data is 
essential for public comprehension. As such it is advised that that the regulator specifies a 
sampling strategy for which defines that an acceptable measure of risk exposure for each 
defined measure. Care must be taken, however, to ensure that the data required for the 
measures chosen can be collected and do not introduce any technological bias.  

5.5 Comparison against Conventional driving 

The Law Commission of England and Wales and the Scottish Law Commission, in their joint 
report, discuss the subject of automated vehicle (AV) safety and how the Safety Standard for 
allowing AVs on the road should be set. During the Law Commissions’ consultation process, 
the majority of consultees who did not express their preference for “other”, expressed their 
preference for a Safety Standard that would require AVs to be safer than the average human 
driver. With every option in the consultation referencing the performance of a human driver, 
this automatically highlights the requirement to measure the safety performance of AVs and 
compare it to that of human drivers.  

Safety performance for conventional driving is commonly measured using safety statistics 
such as collision rates, injury severity and various other indicators generated through data 
collected post-collision (usually through police reporting or collision investigations). For 
example, a key safety indicator is the number of fatalities per billion miles travelled. In Great 
Britain, the fatality rate per billion miles travelled was 4.87 in 2019 (pre-covid levels). For AVs 
to demonstrate improved safety performance with regards to severe collisions that lead to 
fatalities, the fatality rate would need to be lower, in a statistically significant way. 

Safety statistics are generated via the processing of datasets contained in relevant databases 
such as the STATS19 and RAIDS databases. The difficulty in comparing conventional and AV 
driving through safety statistics such as the above lies with collecting the required data to 
build a sample large enough to make a meaningful comparison; the low occurrence of 
collisions with fatalities/injuries per miles travelled, combined with the small number of AVs 
on the road would make this data collection effort an onerous task (see Section 4.1). It should 
also be noted that human driving performance changes slightly on a yearly basis (gradual 
reduction in fatalities and injuries, partly due to improvements in vehicle safety technology) 
which would make meeting human performance standards a moving target. 
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Collection of data through different sources and generation of both lagging and leading SPIs 
is the only feasible solution to provide an acceptable safety standard in terms of conventional 
driving safety performance. The main source of data will inevitably be the vehicle itself (in-
vehicle monitoring data from the ADS log, EDR and DSSAD devices, and Naturalistic Driving 
Studies data for conventional vehicles, AVs collecting data as part of their operation) with 
other sources supporting (police report data, infrastructure data, maintenance data, public 
reports, and collision investigation data – see Section 5.2 for additional detail). It should be 
considered when building a dataset for comparing conventional and AV driving that, any risk 
scenario and performance evaluation will require a data segmentation process according to 
relevant factors (event classification, event partners, weather and environmental conditions, 
road type, event type and contributory factors – see Section 5.3 for additional detail). This is 
a prerequisite for comparing driving performance in specific scenarios and will also affect the 
required data sample for each case. 

A set of key lagging and leading SPIs with a clear correlation to safety is presented in Section 
4 of this report, with many of the recommended SPIs valuable in assessing safety in both 
conventional and AV driving. There is, however, a number of SPIs that are not appropriate for 
a comparison of this type, as they are not relevant to conventional driving. For lagging SPIs, 
those would be MRM activation, ODD exit, autonomous sensor fault triggers and any others 
that are linked specifically to automated operation. Similarly, there are leading SPIs that 
would not be of any use in a conventional/AV driving comparison (for example roadcraft, 
disengagements, traffic infractions or other SPIs not easily quantifiable). 

A comparison between conventional and AV driving is feasible when using measures that can 
be defined quantitively for both automated and conventional driving populations, such as TTC, 
acceleration or using proximity criteria.  

5.5.1 Recommendation 

It is recommended that the specific research activities are required to generate an initial data 
baseline for human driving of the performance measures, considering the need for datasets 
that are comparable with AV data, segmented by the same risk exposure factors, and 
represent scenarios and risk experienced during the AV deployment. In time, data collection 
may be possible through conventional driving data recorders such as EDR, however the 
dataset would need to align with that required for In-use monitoring to enable comparability. 
In order to establish a scheme initially, A naturalistic driving study may be a useful starting 
point to give the required data to set an initial standard.  
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6 Summary and Recommendations 

The joint Law Commissions report on automated vehicles outlined numerous methods for 
regulators to assess and report safety performance in line with a defined safety standard; 
these options are discussed in Section 3. Their key recommendation in this area was that 
Ministers should set an appropriate safety standard for automated vehicles with support from 
experts (Law Commission and Scottish Law Commission, 2022). No matter how the safety 
standard is developed, the in-use regulator will be expected to develop practical ways of 
measuring and reporting on current safety performance against the standard.  

The method by which safety performance will be reported is therefore highly dependent on 
how the safety standard is formulated. There are broadly two aspects that are proposed: 

• Assessment against a defined standard (linked to some level of safety performance); 
and 

• Demanding a higher standard over time with the aim of gradually improving safety 
performance. 

In this report, we suggest that a single measure of performance based on traffic safety 
statistics is not sufficient. Consultees of the Law Commissions’ work also highlighted that it 
has never been feasible to provide an collision rate comparison between a new transport 
system and its predecessor (Law Commission and Scottish Law Commission, 2022). Rather, a 
combination of both leading and lagging measures of safety performance are required that 
monitor different elements of safety. This report evaluates a series of SPIs (both leading and 
lagging) that may be used to evaluate safety performance, derived largely from current 
methods of tracking safety performance.  

Collection of leading measures allows for much larger datasets to be generated compared to 
the data available from solely measuring lagging measures such as collision rate. However, 
while leading SPIs are a crucial element they have their drawbacks. The key concern is to what 
extent the SPIs correlate to an increased exposure to risk relating to AVs, and so to what 
extent are they useful to monitor. This cannot be known prior to deployment. As such, this 
report has taken a qualitative approach to evaluate the usefulness, practicablity, and 
perceived safety correlation to prioritise a set of leading measures that will allow useful data 
to start being gathered. This leads to a key finding: while collecting, reporting and evlauating 
the data may be burdensome, and some SPIs may be found to be not useful, these matters 
will never be resolved until data starts to be collected. It is imperative therefore, that some 
amount of data starts to be collected as soon as possible so that the process for outcome 
reporting can be refined over time.  

The measures and SPIs in this report are therefore a ‘best estimate’ of the most meaningful 
methods of monitoring safety performance which serve as a starting point and which we 
anticipate continually evolving over time as learn more about AV risk factors and how they 
may be detected, analysed and compared. This report also describes how the effectiveness 
of the monitoring methodology (including SPIs) can be evaluated during its operation.  

However, it is well known, that for the the proposed SPIs to be meaningful in any way, they 
must account for the variables that affect risk exposure, such that different ODDs, 
deployment contexts and use cases may require different targets (or target values) to assess 
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the SPIs against. As such, methods are proposed to segment data by key variables known (to 
the best of our current knowledge of AVs) to have an impact on risk exposure. These variables 
are event classification and type, event partners, weather and environmental charcteristics, 
road type/ODD elements, and the causal and contributory factors associated with the event9. 
For each of these variables, the value of capturing them is assessed alongside the availability 
of the data required to capture them effectively. For each, recommendations are made as to 
what variables are recommended, how the relevant data is captured and what values (or 
categories) they may take. 

Early AV deployments will accumulate far fewer miles than conventional vehicles in the same 
time period. As such, the rate of occurrence of risk events cannot be directly compared 
between ADS and conventional driving. Methods for normalising data sets are required that 
factors in the exposure to risk. It is not recommended that normalisation be based solely on 
vehicle miles travelled (which is the usual method for traffic safety analysis), as it will take 
significant time to generate large sample sizes where statistical significance can be drawn. 
Instead other variables to normalise against are advised. The best method of normalisation 
will likely relate to the predominant factors that affect risk exposure for a particular AV 
deployment, as such the normalisation method could vary. However, without a consistent 
means of normalisation across manufacturers (and their deployment) the regulator will not 
be able to aggregate data to evaluate safety performance industry wide. Guidance is required 
to provide manufacturers with a consistent method of how to present Safety performance 
data which should align where possible with international approaches to establish 
interoperability and access to much larger datasets in time. 

The proposed in-use monitoring scheme primarily relies on the capture of in-vehicle data to 
monitor AV safety, which is a key input of aggregated data analysis for monitoring safety 
performance. However, the use of other data sources, such as investigation data, public 
incident reports and police reports cannot be overlooked as these provide coverage of some 
safety relevant events that the vehicle may not or can not detect itself. With the aggregation 
and processing of disparate data sources brings issues of conflicting and duplicating data 
which affect the quality of the assessment. manufacturers and vehicle operators will need to 
have a data management plan in place for handling and priortising between data sources. 
Guidance may be required to ensure this is done consistently. 

There is a need to assess safety performance against a defined standard, with a preference 
for the standard to be set in line the safety of conventional driving. In order to do this a 
baseline level of safety performance for conventional driving needs to be established. 
Currently, while traffic safety statistics are collected in GB and eslewhere, there main focus is 
on police attended collisions and traffic infractions. To compare with the wealth of data 
collected by an AV, equivalent datasets for leading SPIs and risk variables need to be collected. 
In practice, this means human driving perfromance will need to baselined in comparable, 
scenarios, use cases and deployment contexts. A naturalistic driving study with a 
methodology consistet with the data required in for the in-use monitoring schem would likely 
be the best way to collect this data. 

 
9 These have been defined in the Road Incident Taxonomy report for this project (Reed, 2022) 
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The findings of this work have been summarised into a high-level process for aggregated data 
analysis which is shown in  Figure 3. The associated process steps have then been assigned to 
different stakeholders through the use of a RACI (Responsibility, Accountability, Consulted, 
Informed) matrix to highlight how each stakeholder is involved in the process. This is shown 
in Table 6, accompanying the process flow. 
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 Figure 3: Proposed safety performance reporting process 
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Table 6: RACI Matrix for the proposed safety performance reporting process 

 In-Use 
Regulator10 

Approval 
Authority11 

Manufactu
rer 

Operator 

Collection of safety performance 
indicator data 

I  A R 

Data collection for event context 
and risk exposure 

I  A R 

Aggregation over time horizon (i.e., 
Reporting interval) 

I  A  

Data segmentation and 
normalisation 

I  A/R C 

Calculate reportable SPIs I  A/R C 
Collection of conventional driving 
datasets for comparison 

A/R C C I 

Development of safety targets and 
thresholds 

R A C I 

Comparison against conventional 
driving safety targets12 

A/R I I I 

Comparison against historic 
performance13 

A/R C I I 

Placing new requirements on 
manufacturer/operator, Updates 
to type approval, public reporting 

R A C C 

 

The purpose of this reporting process is threefold. 

• To feedback on safety performance to the manufacturer, in order to assess 
compliance with the scheme and set out any necessary remedial action 

• To generate learnings around limitations of the approval scheme, that need to be 
addressed; and 

 
10 In-use regulator also includes any investigating bodies. 

11 And Authorisation Agency, as appropriate 

12 This comparison would be provided only to the manufacturer it relates to. Scheme-wide statistics would be 

produced and which are shareable with public and wider industry  

13 This comparison would be provided only to the manufacturer it relates to. Scheme-wide statistics would be 

produced and which are shareable with public and wider industry 
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• To report on the safety performance of automated vehicles in GB for the purposes of 
generating industry wide knowledge and assure the public that there is sufficient and 
robust oversight of these vehicles. 

In order to ensure that the reporting continuously meets to needs and expectations of the 
public, it is recommended that the in-use regulator regularly reports to Transport Focus and 
the Office of Road and Rail (ORR). 
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Automated Vehicle Safety Assurance - In-Use Safety and Security 
Monitoring 

 

Abstract 

This report discusses the potential uses of in-use vehicle data to generate aggregated data to 
calculate Safety Performance Indicators (SPIs) and track safety performance of Automated Vehicles 
(AVs) throughout their deployment lifetime. The two primary benefits of collecting this data are to 
provide a feedback loop to AV Manufacturers and Operators to improve their safety performance 
as well as compare the safety of AVs more broadly against conventional driving and other transport 
modes. This work identifies a set of SPIs that can be recorded using in-vehicle data and other 
available data sets that can form the basis of a monitoring process that can be improved over time. 
It also discusses how the likely data sets should be processed and analysed to provide fair and 
accurate comparisons to conventional driving. Based on this work, a high-level process for outcome 
reporting by an In-Use Regulator has been proposed. 
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